百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Submitted by cheukllui3 on
Physics
Soft Matter & Biophysics
Physical mechanisms explaining DNA and RNA twist changes

The double-helix structure of DNA deforms by environmental stimuli, which will then affect gene expression, and eventually trigger a sequence of cellular processes. Recent researches led by a physicist from City University of Hong Kong (CityU) observed substantial DNA deformations by ions and temperature changes. Furthermore, the researchers developed one simple physical model to explain DNA deformations. These results provide new insights into the molecular mechanisms of cellular responses to ions and temperature changes and can be used to control gene expression by ions and temperature. 

Effects of DNA twist changes on gene expression
 

The research, which was co-led by Dr. Liang Dai, Assistant Professor from Department of Physics, CityU and his collaborators from Wuhan University, focuses on the changes of DNA twist during DNA deformations because the twist is a key structural parameter of DNA double-helix. Increasing the DNA twist angle (overwinding) not only leads to the formation of DNA supercoils, but also enhances the energy cost of DNA unzipping and hence suppresses gene expression. Note that one key step of gene expression is unzipping a double-stranded DNA into two single-stranded DNA so that the DNA sequence can be read out. On the other hand, decreasing the DNA twist number (unwinding), promotes gene expression. “Active control of DNA twist angle, or DNA supercoils, is employed by bacteria for regulating gene expression,” Dr. Dai explained.

DNA and RNA twist changes
Effects of twist changes on gene expression. Overwinding suppresses gene expression, while unwinding promotes gene expression. (Credit: Provided by Dr. Liang Dai)

Observation of DNA twist changes with salt and temperature
 

DNA and RNA twist changes
The team measures the changes in DNA twist caused by the increase in salt concentration using single-molecule magnetic-tweezers. (C. Zhang, F. Tian, et al. / DOI number: 10.1126/sciadv.abn1384)

In their research, Dr. Dai and his collaborators observed substantial DNA twist changes when varying the salt concentration and temperature. Their experiments show that DNA twist increases with the rising concentration of sodium chloride (NaCl) and potassium chloride (KCl).


Cracked the mystery of the twist-change mechanism
 

After observing the intriguing results of salt-induced twist changes, the researchers were motivated to find out the physical mechanisms. Dr. Dai pointed out that the relevant mechanisms are not straightforward due to the various interactions in DNA, such as hydrogen bonds, base stacking, and electrostatic interactions. Varying the salt concentration modifies many interactions in DNA. These interactions affect DNA twist through different pathways and make the final twist change elusive.

DNA and RNA twist changes
These figures showed that DNA twist angle changes with the salt concentration. (C. Zhang, F. Tian, et al. / DOI number: 10.1126/sciadv.abn1384)

Dr. Dai and his collaborators somehow cracked the case. They developed a simple physical model to reveal the mechanism for salt-induced twist change. “We found that more salt strengthens the screening of inter-strand electrostatic repulsion and hence decreases DNA diameter, which eventually increases the twist,” Dr. Dai added.

Furthermore, the same physical model quantitatively explains temperature-induced DNA twist changes. Based on the analytical formula of the physical model, the research team derived the variation of DNA twist induced by temperature change, and found that it quantitatively matched the experiment results. It means that two independent phenomena, salt- and temperature-induced DNA twist changes, are driven by the same mechanism.

Their experiment confirmed that a 1°C increase in temperature causes the decrease of DNA twist of 0.01 degrees per base pair. “Don’t overlook this ‘0.01 degree’, such a small twist change per base pair can accumulate along a long DNA, say 1 million base pairs, and causes 10,000 degrees of rotation of about 28 full turns, which would lead to a complicated supercoil,” said Dr. Dai.

The findings were published in the academic journal Science Advances, under the title of “Twist-diameter coupling drives DNA twist changes with salt and temperature”. Dr. Dai and Professor Xinghua Zhanfrom Wuhan University are the corresponding authors. Fujia Tian, a PhD student from CityU’s Department of Physics, and Zhang Chen from Wuhan University are the first authors. Other collaborators are from the Chinese Academy of Sciences and Songshan Lake Materials Laboratory.

A unified mechanism for the force-induced twist changes in DNA and RNA
 

Dr. Dai, Professor Zhang led another related study with Professor Zhijie Tan who is also from Wuhan University. Eventually, they solved a mystery that existed for many years: how does DNA or RNA twist change upon stretching?

“The answer to it keeps evolving in the past two decades,” said Dr. Dai. Scientists expected that stretch should decrease DNA twist. However, an experiment in 2006 observed a counterintuitive trend: stretch increases DNA twist. Later in 2014, another experiment observed that stretch decreases RNA twist, an opposite trend with respect to DNA. “This observation is very surprising, considering that double-stranded RNA and DNA share similar structures but turn out exhibiting opposite responses,” said Dr. Dai.

After careful analysis of the force-induced twist changes in DNA and RNA under various conditions, the team found that stretch can both increase and decrease twist in both DNA and RNA, which depends on the situation of DNA or RNA. “Basically, there are four scenarios for DNA and RNA under stretch, while previous studies only observed some of these four,” concluded Dr. Dai.

The team came up with a unified mechanism to explain these four scenarios. Stretching canonical DNA and compressed RNA would make them twist more; on the other hand, for elongated DNA and canonical RNA, stretching would make them twist less.

DNA and RNA twist changes
Dr. Dai and his team propose a unified mechanism to explain four scenarios: stretching can induce the increase and the decrease of DNA and RNA twists, depending on the situations of DNA and RNA. (X.-W.?Q., C.?Z., and H.-L.?D. et al. / DOI number: 10.1103/PhysRevLett.128.108103)
Dr Dai Liang, CityU
Dr. Liang Dai, Assistant Professor from Department of Physics, CityU. (City University of Hong Kong)

Their findings were published in the academic journal Physical Review Letters, under the title of “Multivalent Cations Reverse the Twist-Stretch Coupling of RNA”. Dr. Dai, Professor Zhang and Professor Tan are the corresponding authors of this paper. Tian Fujia from CityU’s Department of Physics also participated. Other collaborators are from Wuhan University.

The above researches were supported by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China.

DOI number: 10.1126/sciadv.abn1384 and 10.1103/PhysRevLett.128.108103

 

This research article originated from CityU Research Stories.

百家乐官网天天乐娱乐场| 洱源县| 百家乐PK| 新澳门百家乐娱乐城| 云南省| 百家乐最安全打法| 百家乐官网长龙如何判断| 神话百家乐的玩法技巧和规则| 大发888娱乐城 df888ylc3403| 玩百家乐官网怎么能赢吗| 闲和庄百家乐娱乐| 百家乐官网赌缆注码运用| 百家乐真人游戏赌场娱乐网规则 | 百家乐折桌子| 百家乐官网投注技巧建议| 鼎龙百家乐的玩法技巧和规则| 百家乐官网网站那个好| 澳门赌百家乐能赢钱吗| 真人百家乐官网破解软件下载| 大发888大发888| 百家乐娱乐城网址| 伊通| 威尼斯人娱乐城代理注册| 新百家乐官网的玩法技巧和规则 | 美国太阳城养老社区| 恒丰百家乐官网的玩法技巧和规则| 波音系列| 线上百家乐平台| 百家乐官网的薇笑打法| 恩平市| 百家乐游戏规则玩法| 澳门百家乐官网有限公司| 德州扑克学校| 威尼斯人娱乐网上百家乐| 百家乐网络赌博地址| 旧金山百家乐官网的玩法技巧和规则| 大连娱网棋牌大厅| 百家乐那个平好| 百家乐必赢法软件| 百家乐官网几点不用补牌| 百家乐官网公式与赌法 |