百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Submitted by cheukllui3 on
Condensed Matter
Physics
Quantum Materials
CityU scientist hunted down the first unpaired Weyl magnetic monopole

Similar to a magnet that always has both south and north poles, a kind of special quasiparticles in condensed matter called “Weyl Fermions” always appear in pairs with opposite chirality. There had been no experimental report that unpaired Weyl points exist in condensed matter until recently, a City University of Hong Kong (CityU) physicist observed the first unpaired singular Weyl magnetic monopole in a specific kind of single crystalline solid.

The research work was co-led by Dr. Junzhang Ma, Assistant Professor in the Department of Physics at CityU and collaborating scientists from école Polytechnique Fédérale de Lausanne (EPFL) and Paul Scherrer Institute (PSI) in Switzerland. It was published in Nature Communications, titled “Observation of a singular Weyl point surrounded by charged nodal walls in PtGa”.

Weyl Fermions
The research team identified 37 Weyl points in the momentum space in PtGa.
Weyl Fermions
Experimental observation of unpaired magnetic monopole in energy-momentum space of PtGa. (Photo source: Dr. Junzhang Ma)

“Our group is the first to see and record an unpaired Weyl magnetic monopole in the experiment. The findings open a new avenue to search for the bulk topological properties of unpaired Weyl magnetic monopoles in solids, which will promote the understanding of basic topological physics, and the application of Weyl semimetals into spintronics,” Dr. Ma said.

Weyl points: similar properties with magnetic monopoles
 

In the real world, a magnet must have south and north poles simultaneously. Modern physics theories suggest the existence of a magnetic monopole, i.e. a quantum elementary unit of magnet with just one pole. But so far, there has been no known experimental or observational evidence that magnetic monopoles exist. Searching for magnetic monopole has been a dream for the modern physics community.

Similarly, Weyl points in condensed matter (including semimetal crystal) have the similar properties as the magnetic monopoles. “Therefore, Weyl points in condensed matter are also called Weyl magnetic monopoles,” explained Dr. Ma.

But there is one difference for Weyl points, based on many physicists’ perceptions. It is widely believed that the existence of an unpaired Weyl magnetic monopole in solids is impossible due to the well-known Nielsen-Ninomiya no-go theorem. As a result, it is thought that Weyl magnetic monopoles in semimetals should always appear in pairs with opposite charges in the 3D momentum space. And the projections of the monopoles on the surface of the single crystal should always be connected by one kind of conducting state called Fermi arcs, which acts like an electronic channel that electrons can transport through it.

No successful experimental precedent
 

Considerable theoretical efforts have been dedicated to searching unpaired Weyl monopoles beyond this no-go theorem, but no successful experiment was reported in the past. Many scientists thought that such kind of “unpaired substance” was hard to exist in single crystalline solids.

But Dr. Ma didn’t think so. He searched thousands of compounds in the database and finally discovered that a few dozens of them are the potential candidates hosting unpaired Weyl monopoles. His suggestions were supported by theoretical colleagues Dr. Quansheng Wu, and Profesor Oleg Yazyev from EPFL. After that, a team led by Dr. Ma and Professor Ming Shi from PSI started a series of photoemission experiments at the Swiss Light Source at PSI and successfully proved the primary ideas.

Combining angle-resolved photoemission spectroscopy (ARPES) experiments with density functional theory calculations, the research team revealed for the first time that unpaired Weyl monopoles can emerge in various compounds. In studying the promising candidate, semimetal crystal platinum gallium (PtGa), the research team identified 37 Weyl monopoles in the momentum space, and found out that the system hosts odd number 37 Weyl points with either +1 charge or -1 charge that prevent them pair together.

Weyl Fermions
The 37 unpaired Weyl points in the 3D reciprocal space of GaPt, and the Berry curvature field (analogous to magnetic field) component in the kz=0 plane. (Photo source: Dr. Junzhang Ma)

They also demonstrated experimentally for the first time that unpaired magnetic monopole can exist in the momentum space of solid without surface Fermi arc. The geometry of the unpaired Weyl point is quite different from that of normal Weyl semimetals, so the properties are expected to change significantly in this new kind of materials, which defines a new study direction.

A new research direction
 

Dr. Ma believes that the groundbreaking discovery of unpaired Weyl magnetic monopole can provide new insight into the fundamental physics of Weyl magnetic monopole in condensed matter. And the special properties of Weyl magnetic monopole, such as high electronic mobility, special response to an outside magnetic field and low heat rate, can make it a good candidate for spintronic computer devices like quantum computing and neuromorphic computing in the future.

Weyl Fermions
Dr Ma from CityU discovered the first unpaired Weyl magnetic monopole in single crystalline solid platinum gallium (PtGa).
 

Dr. Ma and Dr. Wu are the first authors of the paper. Dr. Ma is also the corresponding author, together with Professor Yazyev and Professor Shi from PSI. Collaborators who provided the single crystals include Professor Claudia Felser and Dr. Kaustuv Manna from Max Planck Institute for Chemical Physics of Solids, Germany, Professor Yimin Xiong and Mr. Meng Song from High Magnetic Field Laboratory of the Chinese Academy of Sciences (CAS). Other collaborators include Professor Hong Ding and Professor Tian Qian from the Institute of Physics of CAS.

This work was supported by the CityU, the Swiss National Science Foundation, the Sino-Swiss Science and Technology Cooperation, the European Union’s Horizon 2020 research and innovation program, the Marie Sk?odowska-Curie Actions grant, European Research Council Advanced Grant, the Ministry of Science and Technology of China, the National Natural Science Foundation of China, CAS, and the German Research Foundation (DFG).

DOI number: 10.1038/s41467-021-24289-0

 

This research article originated from CityU Research Stories.

澳门网络博彩| 六合彩官方网站| 百家乐官网五湖四海娱乐| 澳门百家乐官网鸿运| 东营区百家乐艺术团| 太阳城百家乐官网的破解| 喜达百家乐的玩法技巧和规则| 电脑版百家乐官网下注技巧| 丽都百家乐的玩法技巧和规则| 百家乐官网棋牌外挂| 太原百家乐的玩法技巧和规则| 百家乐官网桌现货| 百家乐黏土筹码| 久盛| 百家乐官网投注最好方法| 如何打百家乐的玩法技巧和规则| 上市百家乐官网评论| 大发888线上| 百家乐官网网络娱乐场开户注册| 金三角百家乐的玩法技巧和规则 | 百家乐庄牌闲牌| 澳门百家乐官网秘诀| 百家乐园太阳| 百家乐视频游戏盗号| 尊龙百家乐官网娱乐场开户注册| 宿松县| 大发888线上娱乐百家乐| 百家乐官网如何切牌好| 百家乐官网看点打法| 大发888娱乐城破解软件| 百家乐官网赌场论坛在线| 大发888游戏黄金之旅| 百家乐视频游戏掉线| 诺贝尔百家乐官网的玩法技巧和规则| 玩德州扑克技巧| 澳门百家乐常赢打法| 立即博百家乐官网的玩法技巧和规则 | 最好的百家乐论坛| 百家乐官网赌博代理荐| 棋牌赌博| 大发888棋牌游戏下载|