百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

World’s first: 3D-printed magnetic microrobots delivering cells to precise locations in the body

 

Professor Sun Dong (front row) and (back row from left) Mr Li Dong-fang, Dr Li Jun-yang, Dr Li Xiao-jian, Dr Chen Shu-xun and Mr Luo Tao.
Professor Sun Dong (front row) and (back row from left) Mr Li Dong-fang, Dr Li Jun-yang, Dr Li Xiao-jian, Dr Chen Shu-xun and Mr Luo Tao.

In a world’s first, a team of researchers at City University of Hong Kong (CityU) has developed a magnetic 3D-printed microscopic robot that can carry cells to precise locations in live animals. 

The invention could revolutionise cell-based therapy, regenerative medicine and more precise treatment for diseases such as cancer. 

It was published in journal Science Robotics in June under the title “Development of a magnetic microrobot for carrying and delivering targeted cells”. 

“This could be a huge leap for the emerging industry of cell surgery robotics,” said Professor Sun Dong, Head of the Department of Biomedical Engineering (BME) at CityU and the supervisor of the research team. 

He hoped that the microrobots could be used to carry stem cells that can repair damaged tissues or treat tumours, providing an alternative to invasive surgery, as well as a solution for the side effects caused of drugs and drug resistance issues. 

In recent years, scientists have been exploring the feasibility of using microrobots to deliver drugs or cells to specific part of the body. Magnetic fields were used to move the microrobots because of the precise positioning ability and insensitivity to biological substance. But the application was only limited to in vitro cell delivery, and it might not reflect feasibility in vivo situation due to the complexity inside multi-cellular organisms. 

In this new study, the CityU research team has managed to design a magnetically driven microrobot which can achieve in vivo transport and delivery of targeted cell. “This is the first known instance of a microrobot able to deliver cells in a live body,” said Dr Li Jun-yang, PhD graduate of BME and the first author of the paper. 

To design the microrobot, the researchers assessed the efficiency of different robot designs with computer simulations. They found out that a spherical structure can enhance magnetic driving capability and allow easy fusion of the microrobot with host tissues; a porous spherical structure can improve cell-carrying capacity; and the addition of a burr-like structure to the porous spherical structure can further enhance cell-carrying capacity.

The porous burr-shaped structure of the microrobot is optimal for carrying cell loads through the bloodstream.
The porous burr-shaped structure of the microrobot is optimal for carrying cell loads through the bloodstream.

The size of the new microrobot is less than 100 micrometres (μm) in diameter, similar to that of a single strand of human hair. Using a negative photoresist SU-8 50, the team fabricated the microrobots with 3D laser lithography, and then coated them with nickel for magnetism and titanium for biocompatibility. 

The microrobots are actuated by magnetic gradient force. The research team has designed and made an external electromagnetic coil actuation system to manipulate the magnetic microrobots to reach a desired site. After in vitro experiments, subsequent tests were carried out on two types of animals. 

Since zebrafish has high genetic similarity to humans, and the yolk of its embryo is transparent for easy monitoring, the team used zebrafish embryo for vitro experiment. They loaded the microrobots with connective tissue cells and stem cells, injected them into zebrafish embryos, and managed to guide them to the desired location with magnetic field gradient.

Time lapsed images of the microrobot moving in the yolk of a zebrafish embryo.
Time lapsed images of the microrobot moving in the yolk of a zebrafish embryo.

In addition, microrobots carrying fluorescent cancer cells were injected into laboratory mice to verify whether the cells can be released spontaneously from the microrobots to the targeted site. Cancer cells were used in the experiment because they could be easily detected after forming a tumor. The team found out that the fluorescent cells were successfully transported to the targeted area, passed through the blood vessels and released to the surrounding tissue.

The microrobot successfully transported fluorescent cancer cells to the targeted site in a mouse.
The microrobot successfully transported fluorescent cancer cells to the targeted site in a mouse.

Currently, the team is conducting a pre-clinical study on delivering stem cells into animals for the precise treatment of liver cancers. Clinical studies on humans are expected to take place in two to three years. 

“The research could not have been a success without the grit and determination of our scientists. This is also a perfect example of interdisciplinary collaborations at CityU,” said Professor Sun. 

It took the team ten years to overcome the challenges in different disciplines such as biomedical sciences, nanotechnology and robotics. 

Led by BME, researchers in this project include Professor Sun; co-first authors Dr Li Jun-yang and Dr Li Xiao-jian; PhD students Mr Luo Tao and Mr Li Dong-fangDr Wang RanDr Liu Chi-chiDr Chen Shu-xun (all of them are CityU PhD graduates); together with Professor Cheng Shuk Han, Associate Dean (Learning & Teaching), College of Veterinary Medicine and Life Sciences; and Dr Yue Jian-bo, Associate Professor of Department of Biomedical Sciences.

聯絡資料

Back to top
百家乐视频游戏盗号| 新全讯网3| 百家乐破解仪恒达| 新世百家乐官网的玩法技巧和规则| 澳门百家乐官网论谈| 德州扑克锦标赛| 大发888娱乐城下载电脑怎么上乐讯新足球今日比分 | 菲律宾卡卡湾| 二八杠筒子| 大发888网页登录帐号| 广州太阳城大酒店| 蓝盾百家乐庄家利润分| 百家乐赌博分析网| 百家乐玩法开户彩公司| 百家乐靠什么赢| 杨公风水24山| 百家乐娱乐城介绍| 噢门百家乐注码技巧| 专业的百家乐玩家| 华人百家乐博彩论| 金海岸百家乐的玩法技巧和规则| 好运来百家乐的玩法技巧和规则 | 百家乐娱乐备用网址| 新花园百家乐的玩法技巧和规则| 西游记百家乐娱乐城| 百家乐里靴是什么意识| 网上百家乐游戏玩法| 大发888移动版| 百家乐全部规则| 云鼎娱乐城怎么存钱| 克拉克娱乐城| 线上百家乐官网可靠吗| 百家乐官网三路法| 百家乐官网庄闲排| 太阳城百家乐杀祖玛| 百家乐官网室系统软件| 百家乐官网三宝| 百家乐网站平台| 大发888博必发| 安龙县| 百家乐官网必赢术|