百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Enhancing semiconductor functionality with TeSeO Materials for future electronics

 

In most inorganic semiconductors, electrons serve as the primary charge carriers, which limits the development of complementary devices and circuits. A recent study by City University of Hong Kong (CityUHK) researchers has made significant strides in enhancing the mobility of positively charged carriers, known as "holes", in inorganic semiconductors. The research team achieved this breakthrough by employing an innovative inorganic blending strategy, combining various intrinsic p-type inorganic materials into a single compound, called tellurium-selenium-oxygen (TeSeO).

The TeSeO materials have shown remarkable adaptability and reliability, positioning them as a promising solution to address the challenges with current semiconductors. “This breakthrough opens new possibilities for creating high-performance and cost-effective devices and circuits in the future,” said Professor Johnny Ho, Associate Vice-President (Enterprise) and Professor in the Department of Materials Science and Engineering, who led the study.

Inorganic blending strategy of TeSeO semiconducting materials
Inorganic blending strategy of TeSeO semiconducting materials. (Source: Meng, Y., Wang, W., Fan, R. et al. https://doi.org/10.1038/s41467-024-48628-z )

Professor Ho further explained, “We have successfully developed air-stable, high-mobility TeSeO thin-film transistors and flexible photodetectors that surpass conventional p-type semiconductors, such as metal oxides, metal halides and organic materials. These new devices exhibit remarkable durability and performance, setting a new benchmark in the field.”

One of the major challenges in this research was the difficulty in continuously adjusting the bandgap of conventional p-type semiconductors. However, by rationally combining  different types of inorganic materials, the team was able to engineer the band structure of TeSeO and achieve tunable bandgaps ranging from 0.7 to 2.2 eV.

Transfer curves and hole mobility of p-channel TeSeO thin-film transistor.
Transfer curves and hole mobility of p-channel TeSeO thin-film transistor. (Source: Meng, Y., Wang, W., Fan, R. et al. https://doi.org/10.1038/s41467-024-48628-z )

 

Through the inorganic blending strategy, the research team engineered the band structure of TeSeO to meet specific technical requirements. The tunable bandgaps of TeSeO thin films cover a wide range of wavelengths, including ultraviolet, visible and short-wave infrared regions. This opens exciting possibilities for applications such as high-mobility p-channel transistors, solar cells and wideband photodetectors.

"In the future, we plan to further explore and optimize these applications to harness the full potential of TeSeO materials," said Professor Ho.

The findings, titled "An inorganic-blended p-type semiconductor with robust electrical and mechanical properties", were published online in the scientific journal Nature Communications.

Professor Johnny C. Ho, Associate Vice-President (Enterprise) and Professor in the Department of Materials Science and Engineering at CityUHK, led the study.
Professor Johnny C. Ho, Associate Vice-President (Enterprise) and Professor in the Department of Materials Science and Engineering at CityUHK, led the study. (Photo Credit: City University of Hong Kong)



The first authors of the paper are Dr Meng You, Dr Wang Weijun and Dr Fan Rong, from CityUHK. The corresponding authors are Professor Ho, Professor Yang Lu, from the Department of Mechanical Engineering, The University of Hong Kong, and Professor Wong Chun Yuen, from the Department of Chemistry, CityUHK. Other collaborators include Professor Yip Sen Po, from the Institute for Materials Chemistry and Engineering, Kyushu University, Japan.

Contact Information

Back to top
百家乐开户送8彩金| 百家乐单机游戏下| 自贡百家乐官网赌| 足球竞猜| 水果机| 属狗与属龙做生意好吗| 至尊百家乐官网20130201| 百家乐官网玩法守则| 舟曲县| 皇冠足球网址| 临沭县| 二八杠口诀| 伊通| 半圆百家乐官网桌子| 大发888老虎机游戏| 全讯网址| 百家乐下注技巧| 新葡京百家乐的玩法技巧和规则 | 澳门赌百家乐官网的玩法技巧和规则 | 百家乐h游戏怎么玩| 百家乐路子分析| 20人百家乐官网桌| 宝马会百家乐现金网| 發中發百家乐的玩法技巧和规则| 永利高倒闭| 香港六合彩网| 海丰县| 网上百家乐官网骗局| 网上百家乐官网赌场娱乐网规则| 杨公24山择日| 老钱庄百家乐的玩法技巧和规则| 郑州市太阳城宾馆| 太阳神网上娱乐| 皇冠网小说网址| 百家乐官网分析仪博彩正网| 怎样玩百家乐官网才能| 赌博百家乐的路单| 上市百家乐评论| 百家乐接线玩法| 长江百家乐的玩法技巧和规则 | 百家乐官网搏牌|