百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

CityU researchers develop a self-supervised AI adaptation framework to enhance sensing accuracy of EMG devices

 

Surface electromyography (EMG) has been widely used to measure the electrical activity of muscles. However, the variability in EMG sensing signals due to biological differences of different users significantly degrades the performance and potential of EMG systems. Recently, researchers from City University of Hong Kong (CityU) developed a deep learning-based framework called EMGSense, which can achieve high sensing performance for new users using AI self-training techniques. This opens a new path for developing more advanced and accurate wearable EMG devices in areas like neurorehabilitation and virtual reality.

This latest invention won an award at the 21st International Conference on Pervasive Computing and Communications (PerCom 2023) held at Atlanta, USA. It helps overcome the bottleneck in existing approaches and supports the widespread adoption of EMG-based applications.

emg device
EMG-based sensing has created a lot of intelligent applications.
Photo Credit: Dr Xu Weitao / City University of Hong Kong

EMG measures the electrical activity of muscles using surface electrodes on the skin. EMG-based sensing has attracted considerable attention in recent years and has created a lot of intelligent applications, such as neurorehabilitation, activity recognition, gesture recognition and virtual reality. But a fundamental challenge in existing EMG systems is how to tackle cross-user scenarios. EMG signals can be seriously influenced by various biological factors, such as body fat, skin conditions, age and fatigue. So significant performance degradation would be caused by time-varying biological heterogeneity when the EMG system is employed by different users.

To address this challenge, researchers from the Department of Computer Science at CityU recently proposed the first low-effort, AI-empowered domain adaptation framework, called EMGSense, which provides high-accuracy EMG sensing for new users using AI-training techniques. EMGSense is a self-supervised system with a self-training AI strategy. It can cope with the performance degradation caused by inter-user biological heterogeneity.

The new framework integrates advanced self-supervised techniques into a carefully designed deep neural network (DNN) structure. It uses small-scale unlabeled data from a new user and pre-collected data from several existing users to train a discriminative model to realize intelligent applications for new users. The pre-collected data is stored in the cloud and can serve all new users, reducing the burden of data collection and annotation.

emg device
The key principle of the method is the shared common feature extractor, whose aim is to ensure the transferability of features. The combination of domain-specific feature extractors and classifiers are responsible for independently exploring the diversity among the deep features from different source domains.
Photo credit: Di, D. et al, https://ieeexplore.ieee.org/document/10099164/authors

EMGSense’s DNN structure involves two training stages, which complement each other. It first eliminates user-specific features in the feature space for easy transferring, and then it employs AI techniques to re-learn new target’s user-specific biological features in that space for high-performance EMG sensing. This allows EMGSense to adapt to new users with satisfactory performance in a low-effort, self-supervised manner without wasting significant deployment overhead.

In addition, the researchers leveraged the unlabeled data collected during the usage to achieve long-term robust performance that can handle the time-varying nature of EMG signals.

A comprehensive evaluation of two sizable datasets collected from 13 participants indicated that EMGSense achieved an average accuracy of 91.9% and 81.2% in gesture recognition and activity recognition, respectively. EMGSense also outperformed state-of-the-art EMG-oriented domain adaptation approaches by 12.5%–17.4% and achieved comparable performance with one trained in a supervised-learning manner.

EMG device
The paper’s authors, Mr Duan Di (middle) and Mr Yang Huanqi (2nd from left), received the Best Paper Award at Percom 2023, held in Atlanta, USA. Photo credit: Duan Di / City University of Hong Kong

The novel EMGSense framework has the potential to revolutionize the field of EMG sensing by reducing the burden of data collection and annotation, while achieving high accuracy in a low-effort manner. It fills the research gap in heterogeneity problems in EMG sensing and enables a variety of novel EMG-based cross-user applications, such as clinical practice, neurorehabilitation and human-machine interaction. It also makes a humble step towards the ubiquity of smart EMG wearable devices with higher performance in real-world scenarios.

The paper was published at the PerCom 2023, and it won the “Mark Weiser Best Paper Award”. The paper title is “EMGSense: A Low-Effort Self-Supervised Domain Adaptation Framework for EMG Sensing”.

EMG device
Dr Xu Weitao (4th from left) and his research team from City University of Hong Kong. Photo credit: Dr Xu Weitao / City University of Hong Kong

The first author of the research is Mr Duan Di, a PhD student in the Department of Computer Science at CityU. The corresponding author is Dr Xu Weitao, Assistant Professor in the same department. Other team members from CityU include Professor Jia Xiaohua and Mr Yang Huanqi. The research is supported mainly by the Hong Kong Research Grant Council and General Research Fund.

 

 

Contact Information

Back to top
广州百家乐官网赌城| 临猗县| 大发888如何下载| 关于百家乐概率的书| 大发888怎么进不去| 百家乐官网娱乐网真人娱乐网| 菲律宾百家乐官网赌场娱乐网规则| 澳门百家乐然后赢| 百家乐官网游戏制作| 百家乐庄最高连开几把| 伯爵百家乐官网赌场娱乐网规则| 淘金百家乐的玩法技巧和规则| 海阳市| 冷水江市| 赌博百家乐弱点| 百家乐平注法口诀| 什么是24山风水| 蓝盾百家乐官网网址| 大发888娱乐平台下载| 网上百家乐官网群的微博| 澳门赌百家乐能赢钱吗| 网上百家乐官网正规代理| 百家乐规则以及玩法| 百家乐官网网络赌城| 文安县| 百家乐官网视频官网| 博狗备用网址| 香港六合彩挂牌| 南京百家乐赌博现场被| 百家乐官网桌手机套| 天等县| 百家乐官网试玩活动| 博士娱乐| 百家乐官网小游戏开发| 博彩现金网| 钱大发888斗地主| 真龙娱乐城| 百家乐赢钱lv| 连环百家乐的玩法技巧和规则| 女神百家乐官网娱乐城| 模拟百家乐官网游戏软件|