百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Breakthrough research heralds a new diamond age

 

The research results show that microfabricated single-crystalline diamond tensile sample can attain a maximum uniform elastic strain of up to 9.7%, which is close to the theoretical elastic deformation limit of diamond.

The groundbreaking research was co-led by Dr Lu Yang, Associate Professor in the Department of Mechanical Engineering (MNE) at CityU, in collaboration with experts from Massachusetts Institute of Technology (MIT), Harbin Institute of Technology (HIT) and so on. Their findings have just been published in the prestigious scientific journal Science, titled “Achieving large uniform tensile elasticity in microfabricated diamond”.

With its ultrahigh thermal conductivity and exceptional carrier mobility, diamond is not only the hardest material in nature, but also a promising electronic material which can tolerate high power and high frequency applications. 

However, one obstacle hampering the development of diamond-based electronic and optoelectronic devices is the “doping” challenge caused by the ultra-wide bandgap and its small lattice parameter. Dr Lu’s team was determined to resolve this alternatively by applying elastic lattice strain to control and change the electronic property of diamonds through a mechanical way. 

 “We microfabricated single-crystalline diamond into bridge-like structures from a solid piece of diamond crystal with a well-defined crystalline orientation, and achieved sample-wide large uniform strains under our tensile platform,” said Dr Lu. “We also show that in the process of uniaxial tensile straining, the change in the crystal structure of diamond will reduce its electronic bandgap, making its application in electronic device possible.”

In 2018, Dr Lu and collaborators had revealed for the first time that diamond nanoneedles could undergo ultralarge and fully reversible bending deformation. However, those samples were difficult to control and the resulting strain field was highly localised, which was not ideal for practical device application. This time, their team has developed advanced microfabrication processes for bulk diamond crystals in obtaining well-defined diamond bridge samples. 

Experiment results found that diamond bridges of about 1 micrometer length and 100 nanometer thickness can sustain a highly uniform elastic strain distribution of about 7.5% across the sample, as characterised by Dr. Lu’s tailor-made nanomechanical tensile platform in a controllable manner. 

By further optimising the sample geometry according to the American Society for Testing and Materials (ASTM) standard, the team demonstrated that some bridge sample achieved a maximum tensile strain of up to 9.7%. “It surpasses the local maximum strain value in our 2018 research,” said Dr Lu.

To assess the impact of such large elastic strains on the electronic property of diamond, the research team performed theoretical calculations according to the applied tensile strains in experiments and found that the bandgap of diamond generally decreases as the tensile strain increases, with the largest bandgap reduction rate down from about 5 eV (electron volt) to 3 eV at about 9% strain along a certain crystallographic orientation, which would greatly facilitate diamond’s electronics applications and boost the device performance. 

To demonstrate the concept of strained diamond device, the team successfully microfabricated diamond array samples with multiple bridges, and realised the large, uniform, reversible straining of diamond bridge arrays.

“I believed that we are entering a new diamond age, and I hope in the near future we will be able to apply strained diamonds in the production of electronic devices,” said Dr Lu. 

Dr Lu, Dr Alice Hu who is also from MNE at CityU, and Professor Li Ju from MIT, as well as Professor Zhu Jiaqi from HIT, are the corresponding authors of the paper. The co-first authors are The co-first authors are Dang Chaoqun, PhD graduate, and Dr Chou Jyh-Pin, former postdoctoral fellow from MNE at CityU, Dr Dai Bing from HIT, and Chou Chang-Ti from National Chiao Tung University. The other researchers from CityU are Dr Fan Rong and Lin Weitong. Other collaborating researchers are from Lawrence Berkeley National Laboratory, and Southern University of Science and Technology.

The research was funded by the Hong Kong Research Grants Council and National Natural Science Foundation of China.

Media enquiries: 
Kenix Wong, CityU Communications and Public Relations Office (Tel: 3442 5228/ 9753 9505) 
 

YOU MAY BE INTERESTED

Back to top
网上百家乐官网是现场吗| 做生意摆放什么会招财| 大发888 加速器| 澳门百家乐看路博客| 娱网棋牌下载| 百家乐双筹码怎么出千| 百家乐猜大小规则| 贵宾百家乐的玩法技巧和规则 | 百家乐视频游戏注册| 百家乐官网连锁| 百家乐官网赌场论坛博客| 百家乐官网电话投注多少| 悦榕庄百家乐的玩法技巧和规则 | 真人百家乐官网打法| 百家乐大转轮| 百家乐最新的投注方法| 百家乐视频游戏聊天| 百家乐官网怎么发牌| 网络百家乐官网游赌博| 百家乐官网赌博赌博网站| 圣安娜百家乐官网代理| 机器百家乐官网作弊| 百家乐下载游戏| 澳门百家乐怎样下注| 百家乐最新庄闲投注法| 百家乐好津乐汇| 线上百家乐怎么玩| 乐天堂| 囊谦县| 百家乐官网赌缆十三式| 百家乐官网赢钱秘籍鹰| 百家乐官网博彩免费体验金3| 免佣百家乐官网规则| 赌博药| 百家乐官网玩法开户彩公司| 百家乐官网定位膽技巧| 游戏机百家乐官网的技巧| 24山72局消砂| 做生意的十大风水禁忌| 百家乐bp| 肯博88国际网|