百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

CityU environmental scientist turns food waste into bioenergy source

 

 

An environmental scientist at City University of Hong Kong (CityU) has successfully transformed food waste into bioenergy that can be used to generate heat and electricity, and at the same time reduce the volume of food waste destined for landfills by at least 50%.

 
The innovative process devised by Dr Patrick Lee Kwan-hon, Assistant Professor in the School of Energy and Environment (SEE) at CityU, uses a mixture of bacteria to create the bioenergy from food that gets wasted, heralding the possibility for the development of a viable source of renewable energy for Hong Kong.
 
Hong Kong generates over 1.3 million tonnes of food waste every year, which accounts for one third of municipal solid waste, the majority of which ends up in landfills.
 
Professor Johnny Chan Chung-leung, Dean of SEE, said there is an impending need to tackle the ever-increasing food waste problem.
 
“Organic waste materials should no longer be treated as waste, but as a valuable resource that can be recovered and transformed into useful products. Through the work of our faculty members and researchers, we hope to harness the potential of food waste and contribute to a more sustainable and green environment for Hong Kong and around the world,” Professor Chan said.
 
With close to HK$1 million in funding from the Research Grants Council, Dr Lee embarked on a study a year ago to identify the right mix of naturally occurring bacteria that can efficiently transform food waste into bioenergy.
 
Using advanced DNA sequencing technology, Dr Lee investigated the unique biological features of individual bacteria, looking at how they work together as a group in an anaerobic environment (without oxygen) to produce methane, a commonly available fuel on earth and the main component of natural gas. A combination of a few hundred types of bacteria was identified as a result.
 
Dr Lee said his team’s research showed the microbial process was effective in producing methane to generate heat and electricity, thus reducing our dependence on fossil fuels. According to their research data, the amount of electricity generated through this process could potentially cover 1 to 2% of local consumption if all the 1.3 million tonnes of food waste were converted, he said.
 
The process has the benefit of significantly reducing the amount of food waste and our overall carbon footprint. Dr Lee said at least 50% of the volume of food waste would be reduced during the conversion to methane, a process which would lessen the pressure on landfills. The remaining residue, still rich in nutrients such as nitrogen and phosphorous, could be turned into fertilisers through composting, further decreasing this volume by 75%.
 
From a carbon footprint perspective, this transformation process could reduce 400 kilogrammes of carbon dioxide emissions for every one tonne of food waste treated, mainly as a result of the consumption of the methane produced and the carbon that is stored in the residue.
 
“The significance of this research is that it will substantially reduce the volume of waste to be disposed of in landfills and, in parallel, yield a high concentration of sustainable and economically valuable bioenergy. It will also help to address the climate change issue and our desire for a sustainable future free of fossil fuels,” said Dr Lee.
 

Media enquiries: Karen Cheng, Communications and Public Relations Office (Tel: 3442 6805 or 9201 8895)

YOU MAY BE INTERESTED

Back to top
千亿娱百家乐的玩法技巧和规则| VIP百家乐-挤牌卡安桌板| 太阳城网| 查找百家乐官网群| 新全讯网网址112| 爱婴百家乐官网的玩法技巧和规则 | 澳博国际娱乐| 百家乐高手看百家乐| 注册百家乐官网送彩金 | 百家乐官网平注7s88| 大发888创建账号翻译| 太阳百家乐官网娱乐| 家乐在线| 悦榕庄百家乐的玩法技巧和规则 | 威尼斯人娱乐平台网上百家乐| 百家乐官网家乐娱乐城| 唐人博彩| 百家乐官网注册开户送彩金| 真人游戏 role/play| 百家乐解析| 赌博百家乐官网的玩法技巧和规则 | 百家乐官网软件购买| 百家乐可以出千吗| 墨尔本百家乐官网的玩法技巧和规则| 杰克棋牌是真的吗| 找真人百家乐的玩法技巧和规则| 百家乐路单规则| 玩百家乐高手支招篇| 百家乐是骗人吗| 百家乐官网全部规则| 澳门百家乐官网怎么看小路| 皇冠网888799| bet365扑克| 大发888新澳博| 太阳百家乐破解| 云鼎百家乐官网的玩法技巧和规则| 大发888真人真钱网址| 贵族百家乐的玩法技巧和规则| 百家乐博乐36bol在线| 做生意什么花风水好| 娱乐城百家乐官网的玩法技巧和规则|