百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Advanced bioaerosol project to eliminate Covid-19 and other pathogens secures HK$6.15m from Research Impact Fund

Mirror Fung

 

three profs
(From left) Dr Patrick Lee Kwan-hon, Professor Alvin Lai Chi-keung and Professor Chan Chak-keung.

 

A bioaerosols research project aimed at developing innovative and effective methods for detecting and disinfecting bacteria and viruses including SARS-CoV-2 in indoor environments led by City University of Hong Kong (CityU) has secured HK$ 6.15 million from the Research Impact Fund under the Research Grants Council.

Bioaerosols are very small airborne particles containing living organisms and has been considered one of the possible routes of the spreading of Covid-19.

“The Covid-19 pandemic has already resulted in over 110 million cases and 2.5 million deaths globally since 2020. Our bioaerosols study addresses an urgent need in Hong Kong and globally to rapidly detect and eliminate pathogens in indoor air, including the SARS-CoV-2 virus. The outcomes from this study will not only immediately contribute to the fight against Covid-19 but also significantly raise our preparedness for future pandemics,” said Professor Alvin Lai Chi-keung, Associate Head of the Department of Architecture and Civil Engineering and Project Coordinator.

This four-year research project is titled “Rapid Detection and Synergetic Disinfection of Bioaerosols Using Far UVC and Negative Air Ions: Mechanistic and Field Studies”.

Current methods for sampling bioaerosols cannot detect rapidly and effectively microorganisms of all sizes, especially viruses that are submicron in diameter.

In order to address these shortcomings, the research team will try to couple advanced aerosol technology with molecular biology techniques such as nucleic acid-based methods to enable fast and accurate detection of targeted microorganisms. Nucleic acid-based methods are now used for testing humans, but the team will use them to analyse air samples.

These new methods will be deployed to profile the bioaerosol composition in different indoor settings in Hong Kong.

In addition, the team will combine Far UVC light (far ultraviolet C light) and negative air ions to harness the synergistic effects between the two to achieve over 99.9% removal of bacteria and viruses.

Recently Far UVC has been found to be more effective in the disinfection of microorganisms and most importantly safer than conventional UVC, a known disinfectant that inactivates viruses and bacteria. Negative air ions can also disinfect microorganisms.

After the novel disinfection process has been developed in the laboratory, field tests will be conducted in diverse buildings in Hong Kong to verify its effectiveness under real-life conditions. The team will investigate how the ambient transformation of bioaerosols can influence disinfection effectiveness through laboratory experiments that mimic typical indoor conditions.

“Our target is to develop a rapid and accurate method for detecting bioaerosols and fabricate a prototype with a high disinfection efficacy against a wide range of pathogens in different indoor environments,’ said Professor Lai.

It is a challenge to design a practical device that can disinfect airborne pathogens within a short exposure time, particularly portable units. However, the team members’ background in aerosol science and technology and microbiology will overcome the difficulties, he added.

Other team members include Professor Chan Chak-keung, Dean and Chair Professor of the School of Energy and Environment (SEE), CityU; Dr Patrick Lee Kwan-hon, Associate Dean and Associate Professor of SEE; and scholars from the Kanazawa University, Japan and University of Hong Kong.

Professor Chan has over 30 years of research experience in air pollution and aerosol science and Dr Lee’s research interest lies in biologically-related environmental problems. They are both Co-Principal Investigators of the project.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐官网大转轮真人视讯| 全迅网百家乐的玩法技巧和规则| 百家乐官网赌场走势图| 大发888官方备用网址| 百家乐合理的投注法| 乐天堂百家乐官网娱乐平台| 百家乐官网游戏机子| 皇冠官方网址| 百家乐群dmwd| 最大的百家乐网站| 个体老板做生意的风水| 百家乐官网上海代理| 百家乐官网二人视频麻将| 百家乐园| 足球竞彩网| bet365忠实奖金| 大发888怎么找不到了| 大发888真钱娱乐网| 全讯网168268| 博彩娱乐| 香港六合彩彩图| 百家乐官网真人游戏| 百家乐EA平台| 百家乐可以作假吗| 大发888真钱娱乐游戏博彩| 大发888无数| 大发888下载df888| 大发888娱乐城登录| 利来娱乐网| 足球直播| 百家乐官网出租平台| 百家乐官网试玩全讯网2| 真人百家乐官网轮盘| 新时代百家乐官网娱乐城| 网上百家乐官网赌场娱乐网规则| 利都百家乐官网国际娱乐场开户注册| 百家乐官网庄闲| 百家乐官网龙虎玩| 博联百家乐游戏| 天博百家乐的玩法技巧和规则| 大中华百家乐的玩法技巧和规则 |