百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Graphene face masks that battle bacteria

Mirror Fung

 

Dr Ye
The research team led by Dr Ye Ruquan developed a new method for making anti-bacterial graphene masks quickly and cost effectively.

 

A new method for making anti-bacterial graphene masks quickly and cost effectively has been discovered by Dr Ye Ruquan, Assistant Professor in the Department of Chemistry, and his team at City University of Hong Kong (CityU). The masks have the potential to combat viruses as well.

Commonly used surgical masks are not antibacterial and so harmful elements can remain active for hours, which poses a risk of secondary infection. However, graphene is known for its antibacterial properties, and so scientists have studied the possibility of making graphene masks.

“In previous studies conducted a few years ago, we found that direct writing on commercial polyimide films [a polymeric plastic material] or other biomaterials using a commercial CO2 infrared laser system can generate 3D porous graphene, which makes the fabrication of graphene masks quick and easy,” Dr Ye said.

Preliminary studies on the anti-bacterial graphene masks are already underway. “Our laser-induced graphene [LIG] material can kill almost all the E. coli and aerosolized bacteria. The bacteria-killing activity is induced by the graphene–bacteria interactions,” Dr Ye explained. Under the photothermal effect of the sun, it was possible to kill bacteria with an efficiency of 99.998% within 10 minutes.

LIG
Most carbon containing materials can be converted into graphene using a commercial CO2 infrared laser system.

 

In addition, the team has recently begun testing LIG material's ability to combat viruses and has achieved very promising results. Initial tests on two coronaviruses found that the LIG material inactivated over 90% of the virus in five minutes and all of them in 10 minutes.

Conventional methods for producing graphene include chemical vapour deposition in which graphene is first grown on a porous substrate at high temperatures and the substrate is subsequently etched; and the hydrothermal method in which graphene oxide collects together and is simultaneously reduced in hot water.

But these two methods have poor control over the shape of the product and require high-temperature conditions, lengthy synthesis routes, and high costs.

Dr Ye’s breakthrough combines graphene preparation and patterning into a single step. The method is time and cost effective and may help to resolve the problem of sourcing raw materials. Most carbon containing materials, for example cellulose or paper, can be converted into graphene.

“We can also use biomass or biomaterials as well. It is a green technique,” Dr Ye pointed out.

In addition, the conversion can be carried out under ambient conditions with a laser system found in most machine shops. “I think production streamlining should be simple and the price is expected to fall in between that of a surgical mask and a N95 mask,” he said.

Under computer control, the LIG can be patterned into various shapes with a porous structure. The masks are made comfortable for breathing by adjusting the laser power to modify the size of the pores.

prototype
Dr Ye demonstrates the graphene face mask prototype.

 

“Our next plan is to evaluate the antivirus efficiency and develop a reusable strategy,” Dr Ye said. 

The LIG material has a range of other applications such as fabricating antibacterial medical devices.

“We have made a face mask prototype, and with an optimal structure, we envision releasing it to the market shortly after obtaining the certified tests,” Dr Ye added.

The team has also fabricated a hygroelectric generator powered by human breath that can self-report on the condition of a mask. The adhesion of bacteria or atmospheric particles on the LIG changes surface properties and affects moisture-induced potential, which provides information on the condition of a mask. This kind of mask improves the protection effect, which is especially important for frontline workers.

The CityU research team includes Huang Libei, Su Jianjun, Song Yun, PhD students, and Xu Siyu, MSc student, all from the Department of Chemistry. The work is collaborated with the teams from Professor Tang Ben-zhong, the Hong Kong University of Science and Technology; Dr Zhu Chunlei, Nankai University and Dr Chen Sijie, Karolinska Institutet (Hong Kong).

 

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐真人荷官| 稳赢的百家乐官网投注方法| 尚志市| 大发888真钱游戏平台| 太阳神百家乐的玩法技巧和规则 | 百家乐平注常赢玩法更| 澳门赌百家乐能赢钱吗| 百家乐游戏玩法技巧| 最新百家乐官网电脑游戏机| 百盛百家乐官网软件| 现场百家乐官网能赢吗| 杭锦后旗| 亚斯博彩网| 真人百家乐官网免费开户送钱| 百家乐官网在线作弊| 百家乐官网如何投注法| 百家乐官网视频计牌器| 真人百家乐官网娱乐场| 真钱百家乐官网大转轮| 百家乐官网算牌方| 三星百家乐官网的玩法技巧和规则| 澳门百家乐官网论| 赌百家乐心里技巧| 视频百家乐代理| 网上老虎机游戏| 六合彩大全| 山阴县| 乌什县| VIP百家乐官网-挤牌卡安桌板| 百家乐官网巴厘岛上海在线| 百家乐官网园是真的不| 最新百家乐的玩法技巧和规则| 太阳城假日酒店| 金赞娱乐城真人娱乐| 班戈县| 百家乐官网分析软件骗人| 百家乐官网技巧头头娱乐| 做生意的风水摆件| 百佬汇百家乐的玩法技巧和规则| 德州扑克荷官培训| 邯郸百家乐官网园真钱区|