百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

World’s first: microrobots delivering cells to precise locations in the body

Terry Lam

 

Professor Sun Dong (front row) and (back row from left) Mr Li Dong-fang Dr Li Jun-yang, Dr Li Xiao-jian, Dr Chen Shu-xun and Mr Luo Tao.
Professor Sun Dong (front row) and (back row from left) Mr Li Dongfang, Dr Li Junyang, Dr Li Xiaojian, Dr Chen Shuxun and Mr Luo Tao.


In a world’s first, a team of researchers at City University of Hong Kong (CityU) has developed a magnetic 3D-printed microscopic robot that can carry cells to precise locations in live animals. 

The invention could revolutionise cell-based therapy, regenerative medicine and more precise treatment for diseases such as cancer. It was published in the latest issue of journal Science Robotics. 

“This could be a huge leap for the emerging industry of cell surgery robotics,” said Professor Sun Dong, Head of the Department of Biomedical Engineering (BME) at CityU and the supervisor of the research team.

A revolutionary magnetic microscopic robot developed by CityU can carry cells to precise locations in live animals.
The porous burr-shaped structure of the microrobot is optimal for carrying cell loads through the bloodstream.


The microrobots could be used to carry stem cells that can repair damaged tissues or treat tumours, providing an alternative to invasive surgery, as well as a solution for the side effects caused by drugs and drug resistance issues. 

“This is the first known instance of a microrobot able to deliver cells in a live body,” said Dr Li Junyang, PhD graduate of BME and the first author of the paper.

The size of the new microrobot is less than 100 micrometres (μm) in diameter, similar to that of a single strand of human hair. Using computer simulations, the researchers assessed the efficiency of different robot designs and found that a porous burr-shaped structure is optimal for carrying cell loads and moving through the bloodstream and body fluid. 

The microrobots were then manufactured using 3D laser lithography, and coated with nickel for magnetism and titanium for biocompatibility. 

An external electromagnetic coil actuation system, which is designed and made in CityU, is used to manipulate the magnetic microrobots to reach a desired site after they have been injected into the bloodstream.  

Time lapsed images of the microrobot moving in the yolk of a zebrafish embryo.
Time lapsed images of the microrobot moving in the yolk of a zebrafish embryo.


Subsequent tests were carried out on two types of animals. The researchers loaded the microrobots with connective tissue cells and stem cells, injected them into transparent zebrafish embryos, and used a magnet to guide them to the desired location. 

In addition, microrobots carrying fluorescent cancer cells were injected into laboratory mice. The fluorescent cells were successfully transported to the targeted area, passed through the blood vessels and released to the surrounding tissue. Cancer cells were used in the experiment because they could be easily detected after forming a tumor.

The microrobot successfully transported fluorescent cancer cells to the targeted site in a mouse.
The microrobot successfully transported fluorescent cancer cells to the targeted site in a mouse.  

 

The team is also conducting a pre-clinical study on delivering stem cells into animals for the precise treatment of liver cancers. Clinical studies on humans are expected to take place in two to three years. 

“The research could not have been a success without the grit and determination of our scientists. This is also a perfect example of interdisciplinary collaborations at CityU,” said Professor Sun. 

It took the team 10 years to overcome the challenges in different disciplines such as biomedical sciences, nanotechnology and robotics. 

Led by BME, researchers in this project include Professor Sun; co-first authors Dr Li Junyang and Dr Li Xiaojian; PhD students Mr Luo Tao and Mr Li Dongfang; Dr Wang Ran, Dr Liu Chichi, Dr Chen Shuxun (all of them are CityU PhD graduates); together with Professor Cheng Shuk Han, Associate Dean (Learning & Teaching), College of Veterinary Medicine and Life Sciences; and Dr Yue Jianbo, Associate Professor of Department of Biomedical Sciences.
 

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
威尼斯人娱乐网站| 百家乐设备电子路| 大丰收百家乐官网的玩法技巧和规则 | 菲律宾太阳城娱乐| 涿州市| 路单百家乐的玩法技巧和规则| 现金游戏网| 优博娱乐网站| 百家乐哪家有优惠| 威尼斯人娱乐网站怎么样| 瑞金市| 百家乐看牌技巧| 荔浦县| 百合百家乐的玩法技巧和规则| 百家乐官网防伪筹码套装| 百家乐技巧开户| 百家乐官网押注方法| 威尼斯人娱乐城地图| 饿火命适合做生意吗| 百家乐官网正网包杀| 大发888娱乐场 注册| 百家乐官网斗地主下载| 嘉峪关市| 狮威百家乐赌场娱乐网规则| 百家乐官网赌场策略论坛| 皇冠网社区| 威尼斯人娱乐城 活动| 百家乐没有必胜| 现场百家乐官网电话投注| 百家乐官网真人游戏娱乐场| 真钱百家乐赌博| 缅甸百家乐博彩真假| 百家乐官网庄闲必胜规| 网络赌博| 大发888任务| 百家乐官网机器出千| 嘉善县| 明升 | 威尼斯人娱乐平台反| 百家乐兑换棋牌| 博盈百家乐游戏|