百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Tackling “big data” volumes with compressive sensing

Allen Zhuang

 

Data keep growing fast, particularly those gathered from the Internet and various sensors, giving rise to “big data”, or collections of data sets too large and too complex to process by means of traditional database management systems.
 
Yet, “data doesn’t mean anything until there’s a tool to use it,” said Professor H. T. Kung, William H. Gates Professor of Computer Science and Electrical Engineering at Harvard University, at the beginning of a lecture on 6 December at City University of Hong Kong (CityU).
 
In the lecture, titled “Big Data and Compressive Sensing” and delivered as the latest in the City University Distinguished Lecture Series, Professor Kung focused on “compressive sensing”, a new tool to address the issue of enormous data volumes, in addition to reviewing the background of big data and their applications and describing some general frameworks for analysing big data.
 
Professor Kung noted that data capture has been accelerating in recent years, as the Internet has been carrying communications such as blogs, emails, text messages, tweets, and eCommerce transactions, while various sensors or input tools such as meters, cameras, microphones, and mobile devices have been generating signals and images.
 
The resultant big data, the speaker pointed out, are characterised by “three V’s” – Volume (huge volumes), Variety (structured, unstructured, and semi-structured data), and Velocity (rapidly changing). Obviously, non-conventional data management methods are required to cope with such big data, and cloud computing, a new technology, has been one method instrumental in data analysis.
 
But can computing resources keep up with rapidly growing demands? Appetite for data analysis is unbounded, Professor Kung noted, citing as examples the analyses for predicting social agendas and consumer behaviour, and those for many other purposes. Decisions based on data analysis require sophisticated mathematical tools and careful reasoning, he added.
 
Ultimately we must compress data fast and in large quantities while retaining the essential information, the speaker emphasised, describing this as a fundamental requirement in information processing today. He went on to point out that, fortunately, we can generally tackle the task by dividing sample data into “routine” and “innovative” types, and then processing the former according to known, learned, or designed models, and addressing the latter with “compressive sensing”
 
In conclusion, Profess Kung said that, with such compressive sampling, we would be able to turn a big data problem into a smaller problem in a compressed-data domain, making it much easier to process, transport and store large data sets of huge volumes. He added that this means that even low-cost user devices such as mobile phones can directly participate in big data analysis.
 
In his introduction to the speaker, Professor Way Kuo, President of CityU, praised Professor Kung for his remarkable achievements in computer science and expressed hopes that the lecture would greatly benefit the University’s staff and students.
 
Prior to joining Harvard in 1992, Professor Kung taught at Carnegie Mellon University for 19 years. To complement his academic activities, he has kept strong ties with industry and has served as a consultant for numerous corporations and government bodies. Professor Kung is member of the US National Academy of Engineering, member of the Academia Sinica of Taiwan, and awardee of Guggenheim Fellowship.
??

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐官网大娱乐场开户注册| 不夜城百家乐官网的玩法技巧和规则| 易胜娱乐| 百家乐稳赢秘诀教学| 百家乐官网园蒙特卡罗| 百家乐官网赌博分析网| 在线百家乐官网| 蒙特卡罗线上娱乐| 博九百家乐的玩法技巧和规则 | 百家乐里面的奥妙| 百家乐官网换房| 百家乐官网博彩博彩网| 秭归县| 易胜博官网| 大发888娱 太阳城| 大发888真人游戏平台| 电脑赌百家乐可靠吗| 百家乐和的几率| 百家乐足球| 百家乐官网接线玩法| 百家乐官网路纸表格| 乐天堂在线投注| 外汇| 六合彩百家乐官网有什么平码| 和田市| 百家乐官网如何必胜| 秦皇岛市| 网络百家乐官网路单图| 太阳百家乐官网3d博彩通| 金宝博百家乐官网游戏| 舞阳县| 百家乐官网赌博详解| 红宝石百家乐官网娱乐城| 百家乐官网博彩安全吗| 百家乐官网棋牌游戏币| 百家乐保单破解方法| 百家乐贴士介绍| 全讯网找新全讯网| 黄金城| 百家乐官网投注杀手| 狮威百家乐官网的玩法技巧和规则|