百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Innovative design of titanium alloy with supreme properties by 3D printing

 

A research led by scientists from City University of Hong Kong (CityU) has successfully developed a super-strong, highly ductile and super-light titanium-based alloy using additive manufacturing, commonly known as 3D printing. Their findings open up a new pathway to design alloys with unprecedented structures and properties for various structural applications.  

The research team was led by Professor Liu Chain-Tsuan, University Distinguished Professor in the College of Engineering and Senior Fellow of CityU’s Hong Kong Institute for Advanced Study (HKIAS). Dr Zhang Tianlong, a postdoc in the Department of Materials Science and Engineering (MSE), conducted the experiments. Their paper was published recently in the prestigious scientific journal Science, titled “In situ design of advanced titanium alloy with concentration modulations by additive manufacturing”.

3D printing
The new titanium alloy developed by City University of Hong Kong using 3D printing has lava-like microstructures that give rise to its excellent mechanical properties.Credit: City University of Hong Kong

3D printing: not just a shaping technology

Most people consider 3D printing as a revolutionary technology that can produce machine parts with complex shapes within just one step. “However, we unveiled that it has important potential in designing materials rather than simply designing geometries,” said Dr Zhang, who completed his PhD at CityU under Professor Liu’s supervision earlier this year.

Metallurgists tend to think that a lack of uniformity in alloy components is undesirable because it leads to bad properties, such as brittleness. One of the key issues in the additive manufacturing process is how to eliminate this inhomogeneity during fast cooling. But Dr Zhang’s previous modelling and simulation study found that a certain degree of heterogeneity in the components can actually produce unique and heterogeneous microstructures that enhance the alloy’s properties. So he tried to put these simulation results into reality by using the additive manufacturing.

Designing unique microstructures

“The unique features of additive manufacturing provide us with a greater freedom in designing microstructures,” Dr Zhang explained, who is also the first author of the paper. “Specifically, we have developed a partial homogenisation method to produce alloys with micrometre-scale concentration gradients with the aid of 3D printing, which is unachievable by any conventional methods of material manufacturing.”

3D printing
Grain orientation map of the 3D-printed titanium alloy developed by the City University of Hong Kong research team.
Credit: Dr Zhang Tianlong /DOI number: 10.1126/science.abj3770

Their proposed method involves the melting and mixing of two different alloy, i.e. titanium alloy powders and stainless steel powders, using a focused laser beam. By controlling parameters like the laser power and its scanning speed during the 3D printing process, the team successfully created the non-uniform composition of the elements in the new alloy in a controllable way.

3D printing
Lava-like microstructure in 3D-printed titanium alloy developed by the research team led by City University of Hong Kong.
Credit: Dr Zhang Tianlong /DOI number: 10.1126/science.abj3770

“In addition to the use of additive manufacturing, the composition of the two powder mixture is another key to creating the unprecedented lava-like microstructures with a high metastability in the new alloy,” said Professor Liu. “These unique microstructures give rise to the supreme mechanical properties, allowing the alloy to be very strong but ductile, and in light weight.”

Novel alloy: 40% lighter and super-strong

3D printing
The experimental results show that the new titanium alloy has supreme mechanical properties.
Credit: Dr Zhang Tianlong /DOI number: 10.1126/science.abj3770

While stainless steel is generally 7.9 grammes per cubic centimetre, the new alloy is only 4.5 grammes per cubic centimetre, resulting in around 40% lighter weight. In their experiments, the titanium alloy with lava-like microstructures exhibited a high tensile strength of  ~1.3 gigapascals with a uniform elongation of about 9%. It also had an excellent work-hardening capacity of over 300 megapascals, which guarantees a large safety margin prior to fracture and is useful in structural applications.

“These excellent properties are promising for structural applications in various scenarios, such as the aerospace, automotive, chemical, and medical industries,” said Professor Liu.

“As the first team to use 3D printing to develop new alloys with unique microstructures and properties, we will further apply this design idea to different alloy systems to further explore other properties of the new alloys,” he added.

3D printing
Professor Liu Chain-Tsuan (left) and Dr Zhang Tianlong from City University of Hong Kong discuss the new pathway to design alloys by a 3D printing technique.
Credit: City University of Hong Kong

 

Professor Liu, Dr Yang Tao from MSE, and Professor Wang Yunzhi from The Ohio State University are the paper’s corresponding authors. Other CityU researchers who participated in the research included Dr Luan Junhua, Dr Wang Anding and Dr Kong Haojie. Other collaborators are Professor Huang Zhenghua from Guangdong Academy of Sciences and Dr Wang Dong from Xi'an Jiaotong University.

The research was supported by CityU, HKIAS, the National Key Research and Development Program of China, the National Natural Science Foundation of China, Guangdong Academy of Sciences, and the US National Science Foundation.

DOI number: 10.1126/science.abj3770

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
大发888官方6222.c| 百家乐手机投注平台| 崇仁县| 百家乐开户送彩金28| 银泰百家乐官网龙虎斗| 威尼斯人娱乐城开户地址| 太阳城百家乐官网软件| 威尼斯人娱乐城真钱百家乐| 网络百家乐公式打法| 百家乐官网连跳趋势| 网上老虎机| 大发888在线娱乐城加盟合作| 皇冠现金网娱乐城| 姚记百家乐的玩法技巧和规则 | 好运来百家乐现金网| 莆田棋牌游戏下载| 博之道百家乐的玩法技巧和规则| 冠军百家乐现金网| 赌神网百家乐官网的玩法技巧和规则| 百家乐官网庄闲最佳打法| 百家乐官网谁能看准牌| 淮北市| 网络赌博平台| 大发888中文官网| 百家乐官网网络游戏信誉怎么样| 百家乐改单软件| 环球百家乐现金网| 专业的百家乐官网玩家| 蓝盾百家乐官网赌场| 嬴澳门百家乐官网的公式| bet365娱乐城官网| 大发888官方网下载| 百家乐下注技巧| 老虎机作弊器| 大发888娱乐城 df888ylc3403| 百家乐真人现场| 大发888海立方| 广州太阳城大酒店| 属狗与属龙做生意好吗| 百家乐官网网上赌场| 百家乐官网平7s88|