百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

COURSES >>>


SDSC3002 - Data Mining

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester B 2024/25
Semester B 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

Data mining is about the extraction of non-trivial, implicit, previously unknown and potentially useful principles, patterns or knowledge from massive amount of data. This course introduces the foundation of data mining techniques, including basic concepts of data representation, new software stack for processing massive data such as MapReduce and Spark, and popular data mining tasks like mining frequent itemsets, nearest neighbor search, clustering analysis and graph mining. Students will also learn how data mining techniques are used in real-world applications such as online advertising and recommender systems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 70%
Examination: 30%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC3002.pdf

百家乐单注打法| 威尼斯人娱乐城赌球| 百家乐官网双人操作分析仪| 锦江国际娱乐| 百家乐官网tt娱乐场开户注册 | 百苑百家乐官网的玩法技巧和规则| 百家乐龙虎斗扎金花| 星空棋牌下载| 百家乐看盘技巧| 香港六合彩码报| 百家乐真人玩下载| 百家乐官网游戏什么时间容易出| 大发888账号| 百家乐投注技巧| 传奇百家乐官网的玩法技巧和规则| 博久百家乐官网论坛| 百家乐五湖四海娱乐网| 美国百家乐官网怎么玩| 百家乐赌博技巧大全| 百家乐官网怎么压对子| 38坊| 大发888网页版体育| 百家乐在发牌技巧| 永利百家乐官网娱乐| 百家乐代理条件| 阴宅24山吉凶| 申博娱乐城官网| 德州扑克排名| 电子百家乐假在线哪| 真人百家乐官网的玩法技巧和规则 | 百家乐庄闲机率分析| 百家乐官网国际娱乐场开户注册| 百家乐官网园小区户型图| 百家乐遥控洗牌器| 百家乐官网高手打| 郑州百家乐官网的玩法技巧和规则 | 澳门百家乐官网21点| 百家乐官网注码调整| 广发百家乐官网的玩法技巧和规则 | 大发888登陆器下载| 威尼斯人娱乐城吃饭|