百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Prof. Jian WANG

Education
PhD in Mechanical Engineering, The Hong Kong University of Science and Technology
Staff title
Assistant Professor

Prof. Jian WANG obtained his BEng degree in Energy, Power System, and Automation Engineering from XJTU (China) with a distinguished honor (top 0.2%) in 2013. After the UG education, he took one year’s postgraduate course at XJTU majoring in solid mechanics, and then he moved to the HKUST for Ph.D study. In 2017, he visited Northwestern University (USA) working with Prof. Sossina Haile on developing solid oxide fuel cells, and in 2018 he received Ph.D degree from the HKUST. Before joining the SEE at CityU, he worked as the SNU Science Fellow researcher at Seoul National University (Korea). Prof. WANG’s research is focusing on sustainable energy conversion and storage devices, e.g., fuel cells, electrolyzers, and batteries, with a particular interest in the dynamic electrochemical energy process, see details from group website: www.echem-energy.com

Education
2014/09-2018/08 Ph.D in Mechanical Engineering, HKUST, Hong Kong SAR, China
2017/11-2018/02 Visiting Pre-doctor fellow, Northwestern University, USA
2013/08-2014/07 Graduate study majoring in Solid Mechanics, Xi'an Jiaotong University, China
2010/08-2013/07 Bachelor of Engineering, Energy, Power System and Automation Engineering, Xi'an Jiaotong University, China
2009/08- 2010/07 Undergraduate study majoring in Clinical Medicine, Xi'an Jiaotong University, China
Other Information

Research Interest

Electrochemical cells (e.g., fuel cells, electrolyzers, batteries) are made of complex components, characterizing which from a specific scale fails to convey comprehensive or even correct insights. Moreover, with continuous mass & energy exchange with the external environment, electrochemical cells respond dynamically. Ex-situ characterizations cannot reflect the dynamic energy process well. Through in-situ experimental setups, we are targeting to operando probe electrochemical cells across multiple scales, reveal the dynamic composition-structure-performance relationship for energy cells, and clarify the mechanisms of their energy conversion & storage processes. Further by integrating finite element analysis and quantum mechanics calculations, we are improving the understanding of those energy cells. Meanwhile, by precisely regulating the real-time behavior of energy materials, we are developing high-performance and cost-effective energy devices. Some specific research interest includes the following and beyond:

  • Operando monitoring and in-situ modulation of electrochemical energy process;
  • Developing sustainable energy devices (Fuel cells, Electrolyzers, Vehicle batteries);
  • CO2 splitting and reduction technology;
  • Environmental and Economic analysis & optimization of energy systems;
  • Thermal management of electronic devices;
  • Finite element analysis and first-principle calculation.

Positions Available

Prof. WANG’s DEEP (Dynamic Electrochemical Energy Process) group has several openings for research assistants, master/Ph.D students, postdoctoral fellows, and visiting scholars. Successful candidates should demonstrate strong motivation, critical thinking ability, as well as effective writing and communication skills. DEEP welcomes members with diverse skills, and there is no solid requirement on the area of the candidate’s education/working background. Relevant disciplines such as energy engineering, electrochemistry, material science, applied physics, mechanical engineering, thermofluids, and beyond are welcome. Friendly group environments, high-level research facilities, competitive salary, and overseas exchange/conference/research opportunities, will be offered. To apply, please contact Prof. Jian WANG directly with the CV attached. Review of applications will begin immediately until the positions are filled.

City University of Hong Kong is an equal opportunity employer and we are committed to the principle of diversity. We encourage applications from all qualified candidates, especially applicants who will enhance the diversity of our staff.

Selected Journal Publications

First /Co-first?/Corresponding*

After the CityU: 
  • M. Ju, Z. Wang, J. Wang,* A selective photothermocatalytic reactor enables free solar tracker for sustainable fuel production, Device, 2025, 3.3. 100652.
  • M. Wang, Z. Wang, Y. Zhang, Y. Shi, TS. Chan, SC. Haw, J. Wang, H. Wang, S. Wang, H. Fei, R. Liu, T. Liu, CF. Yan, J. Wang,* Regulating Reconstruction Activity of Cobalt Electrode for Optimized Water OxidationACS Energy Lett. 2024, 9, 11, 5502-5508 (Journal main cover)
  • J. Wang*, Y. Zhang, Y. Wang*, J. Cho, TS Chan, Y. Ha, SC Haw, CW Kao, Z. Wang, J. Lei, M. Ju, J. Tang, T. Liu, S. Zhao, Y. Dai, A. B. Wiechec, FR Chen, W. Wang, C. H. Choi, ZP Shao*, M. Ni*, Heterostructure Boosts a Noble-metal-free Oxygen-evolving Electrocatalyst in Acid, Energy Environ. Sci.,2024, 17, 5972-5983.
  • Hao Fei, Ruoqi Liu, Tong Liu, Min Ju, Jia Lei, Ziyi Wang, Siyuan Wang, Yunze Zhang, Wen Chen, Zhuangzhi Wu, Meng Ni, J. Wang,* Direct Seawater Electrolysis: From Catalyst Design to Device Applications, Advanced Materials, 2024,36, 2309211.
  • J. Wang,* Controlling Dynamic Reconstruction Chemistry for Superior Oxygen-evolving CatalystsChem, 2023, 9, 1645-1657
  • J. Wang,* H. Hyun, S. Seo, K. Jeong, J. Han, S. Jo, H. Kim, B. Koo, D. Eum, J. Kim, J. Chung, H. Cho, H. N. Han, T.J. Shin, M. Ni, K. Kang*, and J. Lim*, A Kinetic Indicator of Ultrafast Nickel-Rich Layered Oxide Cathodes, ACS Energy Lett. 2023, 8, 7, 2986–2995 (Journal main cover
  • Kong, YQ. Sun, Z. Li, H.F. Zheng, J. Wang,* H.S. Wang, The development path of direct coal liquefaction system under carbon neutrality target: Coupling green hydrogen or CCUS technology,  Applied Energy,  2023, 347, 121451. 
  • J. Wang,* Reconstructing Oxygen Electrocatalysts for Hydrogen Energy Applications. Current Opinion in Electrochemistry, 2023, 39, 101304.
  • S.Y. Wang, M. Wang, Y.Z. Zhang, H.S. Wang, H. Fei, R.Q. Liu, H. Kong, R.J. Gao, S.Y. Zhao, T. Liu, Y.H. Wang, M. Ni, F. CiucciJ. Wang,* Metal Oxide‐Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress, Small Methods, 2023, 2201714.  
  • Fei, R.Q. Liu, Y.Z. Zhang, H.S. Wang, M. Wang, S.Y. Wang, M. Ni, Z.Z. Wu, J. Wang,* Extending MoS2-based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives. Materials Futures,2023, 2, 022103. (Excellent paper of the Year
  • Wang?, Y. Wang?J. Wang?, Y.F. Song?, M. Robson, A.Seong, M. Yang, Z. Zhang, A. Belotti, J. Liu, G. Kim, J. Lim, Z. Shao, F. Ciucci. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodesNature Catalysis, 2022, 5, 777–787. (Research highlight by Nature Review Materials https://doi.org/10.1038/s41578-022-00489-y)
 
Before the CityU: 
  • J. Wang,* S. Kim, J. Liu, Y. Gao, S. Choi, J. Han, S. Jo, F. Ciucci, H. Kim, Q. Li, W. Yang, X. Long, S. Yang, S. Cho, M. Kim, H. Kim, J. Lim. Redirecting Dynamic Surface Restructuring of a Layered Transition Metal Oxide Catalyst for Superior Water OxidationNat. Catal., 2021, 4, 212–222. (Highlight as journal cover)
  • R. Gao,? J. Wang,? Z-F Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J. Zhou. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt-loading. Nat. Energy, 2021, 6, 614–623. 
  • Z. Zhang, ? J. Liu, ?  J. Wang, ? Q. Wang, Y. Wang, K. Wang, Z. Wang, M. Gu, Z. Tang, J. Lim, T. Zhao, F. Ciucci. Single-atom Catalyst for High-performance Methanol Oxidation. Nat. Commun, 2021,12,5235.
  • M. Lin,? J. Wang,? G. Kim,? J. Liu, L. Pan, Y. Lee, J. Oh, Y. Jung, S. Seo, Y. Son, J. Lim, J. Park, T. Hyeon, J. Nam. One-Pot Heterointerfacial Metamorphosis for Synthesis and Control of Widely Varying Heterostructured Nanoparticles. J. Am. Chem. Soc. 2021, 143, 9, 3383–3392. (Highlight as journal cover)
  • J. Wang, ?,* Y. Gao,?  H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim. Non-precious Catalysts for Alkaline Water Electrolysis: Operando Characterizations, Theoretic calculations, and Recent Advances. Chem. Soc. Rev., 2020, 49, 9154-9196.
  • J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci. Carbon-based Electrocatalyst for Sustainable Energy Applications. Prog. Mater. Sci., 2021, 116, 100717. (WOS Highly Cited Paper)
  • J. Yu,? J. Wang,? X. Long, L. Chen, Q. Cao, C. Qiu, J. Wang, J. Lim, S. Yang. Formation of FeOOH Nanosheets Induces Substitutional Doping of CeO2-x with High Valence Ni for Efficient Water Oxidation. Adv. Energy Mater., 2021, 11, 2002731.
  • S. Hu,? J. Wang,? J. Zhang, J. Lim, Y. Gao, S. Zhang. Engineering the Electronic Structure of Perovskite Oxide Surface with Ionic Liquid for Enhanced Oxygen Reduction Reaction. Appl. Catal. B: Environ.2021, 282, 119593.
  • Curcio,? J. Wang,? Z. Wang,? Z. Zhang, A. Belotti, S. Pepe, M.B. Effat, Z. Shao, J. Lim, F. Ciucci. Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. Adv. Funct. Mater., 2020, 2008077.
  • H. Zhao, N. Tu, W. Zhang, M. Zhang, J. Wang.* Novel Synthesis of Silicon/Carbon Nanotube Microspheres as Anode Additives through Chemical Vapor Deposition in Fluidized Bed Reactor. Scripta. Mater., 2021, 192, 49-54.
  • J. Wang,* J. Kim, S. Choi, H. Wang, J. Lim. A Review of Carbon-supported Non-precious Metals as Energy-related Electrocatalysts. Small Methods, 2020, 4, 2000621.
  • J. Wang, H. Kim, H. Hyun, S. Jo, J. Han, D. Ko, S. Seo, J. Kim, H. Kong, J. Lim. Probing and Resolving the Heterogeneous Degradation of Nickel-rich Layered Oxide Cathodes across Multi-length Scales. Small Methods2020, 4, 2000551.
  • J. Wang, S. Choi, J. Kim, J. Lim. Recent Advances of First d-block Metal-based Perovskite Oxide Electrocatalysts for Alkaline Water Splitting. Catalysts 2020, 10, 770.
  • J. Wang, F. Ciucci. In-situ Synthesis of Bimetallic Phosphide with Carbon Tubes as an Active Electrocatalyst for Oxygen Evolution Reaction. Appl. Catal. B: Environ., 2019, 254, 292-299.
  • J. Wang,* H. Kong, Y. Xu, J. Xu. Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling. Appl. Energy, 2019, 241, 433-443.
  • H. Kong, X. Kong, H. Wang, J. Wang.* A Strategy for Optimizing Efficiencies of Solar Thermochemical Fuel Production Based on Nonstoichiometric OxidesInt. J. Hydrogen Energy, 2019, 44, 19585-19594.
  • J. Wang,? Y. Gao,? F. Ciucci. Mechanochemical Coupling of MoS2 and Perovskites for Hydrogen Generation. ACS Appl. Energy Mater. 2018, 1, 6409–6416.
  • J. Wang, Y. Gao, TL You, F. Ciucci. Bimetal-decorated Nanocarbon as A Superior Electrocatalyst for Overall Water Splitting. J. Power Sources, 2018, 401, 312-321.
  • J. Wang, Y. Gao, D. Chen, J. Liu, Z. Zhang, Z Shao, F. Ciucci. Water Splitting with an Enhanced Double PerovskiteACS Catal., 2018, 8, 364-371.
  • J. Wang, F. Ciucci. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal AdditionSmall, 2017, 13, 1604103.
  • J. Wang, K. Y. Lam, M. Saccoccio, Y. Gao, D. Chen, F. Ciucci. Ca and In co-doped BaFeO3?δ as a Cobalt-free Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells. J. Power Sources, 2016, 324, 224-232.
  • J. Wang, H. Zhao, Y. Gao, D. Chen, C. Chen, M. Saccoccio, F. Ciucci. Ba0.5Sr0.5Co0.8Fe0.2O3?δ on N-doped Mesoporous Carbon Derived from Organic Waste as a Bi-functional Oxygen Catalyst. Int. J. Hydrogen Energy, 2016, 41, 10744-10754. 
  • J. Wang, M. Saccoccio, D. Chen, Y. Gao, C. Chen, F. Ciucci. The Effect of A-site and B-site Substitution on BaFeO3?δ: An Investigation as a Cathode Material for Intermediate-temperature Solid Oxide Fuel CellsJ. Power Sources, 2015, 297, 511-518.
Staff Image
Prof. Jian WANG
Contact Information
Office: YEUNG-G5453
Phone: +(852)-3442-9285
Fax: +(852)-3442-0688
Email: jian.wang@cityu.edu.hk
Web: https://www.echem-energy.com/

Time slots for consultation

Research Interests
  • Operando monitoring and in-situ modulation of electrochemical energy process
  • Developing sustainable energy devices (Fuel cells, Electrolyzers, Vehicle batteries)
  • CO2 splitting and reduction technology
  • Environmental and Economic analysis & optimization of energy systems
  • Thermal management of electronic devices
  • Finite element analysis and first-principle calculation
百家乐破解版下载| 猪猪棋牌游戏| 金榜百家乐官网娱乐城| 百家乐鸿泰棋牌| 宁津县| 天博百家乐官网的玩法技巧和规则 | 鼎尚百家乐官网的玩法技巧和规则| 大发888casino| 武山县| 百家乐棋牌正式版| 大发888游戏平台188| 百家乐官网闲单开多少| 博之道百家乐的玩法技巧和规则| 百家乐官网记算| 网络百家乐棋牌| 百家乐官网预测和局| 欢乐博百家乐官网娱乐城| 大发888真人娱乐场| 百家乐专打单跳投注法| 立即博百家乐官网现金网| 威尼斯人娱乐城游戏| 金冠百家乐官网娱乐城| 在线百家乐策略| 百家乐官网作弊| 真人百家乐官网怎么对冲| 六合彩投注网| 老人头百家乐官网的玩法技巧和规则| 百家乐赢率| 在线百家乐官网作| 百家乐官网作弊手段| 大上海百家乐的玩法技巧和规则 | 德州扑克小说| 现金百家乐攻略| 真人百家乐官网最高赌注| 百家乐官网3带厂家地址| 正品百家乐电话| 土豪百家乐官网的玩法技巧和规则| 百家乐官网赌博怎么玩| 上海德州扑克俱乐部| 全讯网hg7758.com| 百家乐官网导航网|