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Abstract

We considersomealgorithmsfor unconstrainedminimization without derivatives
that form linear or quadraticmodels by interpolationto valuesof the objective
function. Then a new vectorof variablesis calculatedby minimizing the current
model within a trust region. Techniquesaredescribedfor adjustingthe trust re-
gion radius,andfor choosingpositionsof theinterpolationpoints that maintainnot
only nonsingulaxityof interpolationequationsbut also the adequacyof the model.
Particularattentionis givento quadraticmodelswith diagonalsecondderivativema-
trices,becausenumericalexperimentsshow that they areoften moreefficient than
full quadraticmodelsfor generalobjectivefunctions. Finally, somerecentresearch
on the updatingof full quadraticmodelsis describedbriefly, using fewer interpola-
tion equationsthanbefore. The resultantfreedomis takenup by minimizing the
Frobeniusnorm of the changeto the secondderivativematrix of the model. A
preliminaryversionof this methodprovidessome verypromisingnumericalresnits.
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i. Introduction

Let the minimum of a function F(zj, ~ be required,whereF is definedby
a subroutinethat provides the value of F(~) for any vector of variablesat We
assumethat no derivativesof theobjectivefunction areavailable. Thealgorithms
that havebeendevelopedfor this calculationvarygreatlyin theusethat is madeof
functionvalueswhendecidingon changesto thevariables.In simulatedannealing,
for example,eachnewvectorof variablesis a randommovefrom a point whereF
is known, but, in order to achievesomeglobal convergenceproperties,that point
may not be wherethe leastvalueof the objectivefunction hasbeencalculated
so far. Moreover, if an algorithmemploysa line search,then severalconsecutive
newvectorsof variablesmaybe collinear, and alsothe choiceof searchdirection
may demandsomeextrafunction evaluations,especiallyif a gradientvector has
to be estimatedby finite differences. We are going to restrict attentionto trust
regionmethods,however,wherean approximationto F(z~,~c7Z~, is constructed
from availablefunction values. Then the next vector of variablesis generated
usuallyby seekingthe minimum of the approximationin a suitablepart of R~.
The approximationis called the “model function”.

We reservethe notationQ(~), ~eR’~, for the currentmodel function,because
oftenit is a quadraticpolynomial.We taketheview until Section3, however,that
any linear space.A4 of functionsfrom %fl to 7? canbe prescribed,thedimension
of M beingthefinite numberm. Theneverymodel functionis an elementof M.
The algorithmof Conn, Scheinbergand Toint (1997) beginsthe iterationsbefore
rn valuesof F havebeencalculated,and someotheralgorithmspick eachmodel
function from M by weightedleastsquaresfitting to all thevaluesof F that are
available. In the trust regionmethodsthat we consideruntil Section5, however,
eachQ is an elementofM that is definedby interpolationconditionsof theform

theright handsidesbeingknown. Thepoints xe7Z~, i=i,2,...,m,havetobe
in positionsthat ensurethe nonsingularityof thesystem(1.1), a convenientway
of satisfyingthis condition beingdescribedin Section2.

Whenchoosingthe linear spaceM, attention shouldbegiven to the amount
of work that arises from solving a systemof the form (1.1) on every iteration.
In the trust regionmethodsof the author,the only calculatedvaluesof F that
are retainedat the beginningof thecurrent iteration are the m right handsides
of expression(1.1). Then the iteration generatesat most one new value of F.
Thereforeat leastrn—i of thecurrentinterpolationconditionsarecarriedforward
to the next iteration. It follows that, by applying updatingtechniques,eachnew
model function Q afterthe first one canbe generatedin only 0(m2) operations.
Unfortunately,however,if M containsall quadraticpolynomials,thenm hasthe
value~(n+1)(n+2), so theroutine work of eachiteration is 0(n4). Thus the use
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of full quadraticmodelsbecomesintolerablefor more than about 50 variables.
On the other hand,if Ad is the spaceof linear andconstantpolynomials,which
hasdimensionn+1, thenthe constructionof model functionsis not expensivein
comparisonwith otheroperationsof trust regionmethods,but suchmodelsseem
to be unsuitablefor unconstrainedoptimization,becauselinearpolynomialshave
no curvature.

Thereforewe considerthe ideaof letting Ad be the spaceof quadraticpoly-
nomials that have diagonalsecondderivativematrices. In this casethe task of
updating Q is relatively easy, becausethe dimensionof Ad is only m = 2n+1.
Further,we expect the presenceof diagonalcurvatureto providesubstantialim-
provementsover the use of linear polynomial model functions. We also expect
a trust region methodwith the new Ad to requiremore iterationsthan a trust
regionmethodwith the full quadraticmodel, becauseless informationaboutthe
objectivefunction is presentin Q. Thesequestionsare investigatedby applying
methodswith the types of model that have beenmentionedto severalexamples
of unconstrainedoptimizationcalculations. We will find in Section4 that some
of thebestnumericalresultsaregiven by the new choiceof Ad.

All of the software that is employedin the experimentswas written in For-
tran 77 by the author. Specifically, the COBYLA (Powell, 1994) andUOBYQA
(Powell, 2000)packagestreatthecaseswhenAd is composedofall polynomialsof
degreeatmost oneand all polynomialsof degreeat mosttwo, respectively,andthe
resultsfor the newAd were computedby a modification of UOBYQA. Including
the modificationwasstraightforward,becausealreadythe author had developed
a versionof UOBYQA wheretheelementsof Ad arequadraticpolynomialswhose
secondderivativematriceshaveany givensparsitystructure,subjectto symmetry
andunrestricteddiagonalelements.Thenthe samesparsityconditionsoccurred
in the objectivefunction F(~3, ~ eR’~, but now we run the softwarefor the new
Ad evenif all the secondderivativesof F arenonzero.The nameCOBYLA is an
acronymfor ConstrainedOptimizationBY LinearApproximation. That package
is intendedfor calculationswith constraintson thevariablesthat providecompen-
sationfor thelackof curvaturein themodel functionQ, but COBYLA canalsobe
appliedto unconstrainedproblems,becausethenatypical changeto thevariables
is a multiple of the steepestdescentdirectionof the currentmodel function. On
theotherhand, UOBYQA is designedfor unconstrainedoptimization.

Section2 gives somedetailsof thesetrust regionmethodsthat arevalid when
Ad is a generallinear space.Somepropertiesof our particularchoicesof Ad are
addressedin Section 3. The resultsof thenumericalexperimentsthat havebeen
mentionedarepresentedand discussedin Section4. They providestrongreasons
for thedevelopmentof somenew algorithms.Thereforeanotherway of updating
full quadraticmodelsis consideredbriefly in Section5. It minimizestheFrobenius
normof thechangeto V2Q whentherearefewer than ~(n+1)(n+2) interpolation
conditions.
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2. Detailsof the methods

At the beginningof any iterationof ourtrust regionmethods,the modelfunction
Q(~), ~e7?’~, definedby the interpolationconditions(1.1), is available.Further,
we assumewithoutlossof generalitythat z.~ is thebestoftheinterpolationpoints,
which meansthat it hasthe property

F(~1) =F(~~), i—i 2 ,m. (2.1)

If more thanone ofthefunction valuesF(z~),i=1,2,... , m, is least,wesplit the
tie by letting ~ be the point at which the valueF(~1) wascalculatedfirst. The
“suitablepart ofRn’,, mentionedin thefirst paragraphof Section1, hastheform

S = {x: HZ—ziII =A}, (2.2)

for some positive parameterA, where the vector norm is Euclidean. The set
SCR’~ is called the “trust region”.

Many papershave addressedthe calculationof the point ~, say, in S that
minimizesthe model functionQ(z3 xE S If Q is a linearpolynomial, then~A is
wherethesteepestdescentdirectionof Q from ~ meetsthe boundaryofthetrust
region, and, if Q is a quadraticpolynomial, then the author prefersto generate
~ by the methodof Mor4 and Sorensen(1983). That method is iterative, the
iterationsbeingstoppedin practicewhenanelementLA of S is foundthat satisfies
the condition

— F(~1) =(1—n) [F(~A) — F(~1)], (2.3)

where ij is a prescribedpositive tolerance. Thus the choice ij 0.01, which is
typical, ensuresthat the estimate~A ~ ~A providesat least99% of the greatest
reductionin F from FQr1) that canbeachievedwithin thetrust region. Weignore
the differencebetween

2A and ~A from now on, letting ~ denotethe calculated
elementof S that gives an acceptablysmall valueof the model function.

The iterationsof our trust region methodsthat generateZA are called “trust
regioniterations”. Usuallythey calculatethefunction valueF(~A), andthen it is
alsousual for one of theinterpolationpointsx i=1, 2,..., m, to be replacedby

alA. Further,Q is updatedin orderto satisfythenewinterpolationequations(1.1).
Detailsof theseoperationsare given later. No othernew valuesof the objective
function arefound by a trust regioniteration,but a new vectorof variablesthat
is different from Za may be required. An example is the possibility that the
first componentof alA is always the sameas the first componentof ~. In that
case,if only trust region iterationswere applied,and if the systemof equations
(1.1) remainednonsingularthroughoutthe sequenceof iterations, thensomeof
theinterpolationequationsof thefirst model function would haveto be retained.
On the other hand, in order to achieveenough accuracyin the approximation
Qrt~F, it maybe necessaryfor all the interpolationpoints to besufficiently close
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to ~. Thereforeour trust regionmethodsalso include someiterationsthat are
called “model iterations”. Eachmodel iteration calculatesthe objectivefunction
at a new point, ~alQC 7?fl say, that is chosento assistthe suitability of Q asan
approximationto F(al), zeS.

The first iteration is alwaysa trust region iteration,and a model iterationis
always followed by a trust region iteration. Thereforethe decisionthat the next
iterationwill bea model iterationis takenduringa trust regioniteration. Further,
if that decisionis made,thenthe trust regioniterationpicks the point alQ andthe
integer,t say, from (2,mJ,suchthat alt will be rejectedfrom theset{ali, al2, ...

to make room for ~. Thus the only operationsof a model iteration are the
calculationof F(alQ), the updatingof Q that is requiredbecauseQ(al~)=F(alt) is
replacedby Q(al0) =F(alQ) in the system(1.1), all other interpolationconditions
beingretained,andexchanging~ with alq if F(alQ) is less thanF(al1).

It is possiblefor thevectorXA of a trust region iterationto be the point ali,

becauseQ(~1) = F(~) can be the leastvalue of Q(al), ~ c S. In that casethe
calculationof F(~) would besuperfluous.Further,theuseof F(~A) maybedis-
advantageousif thedistanceIJalA—~1 jj is small, becausethena modelfunctionthat
interpolatesbothF(al1) andF(alA) tendsto besensitiveto errorsin theobjective
function,especiallyif theerrorscausesubstantialdiscontinuities.Therefore,after
generatingalA, eachtrust region iterationteststhecondition

IIalnZiI~ >
1p (2.4)

for a choiceof p that is addressedbelow. The function valueF(alA) is calculated
on the current iteration if and only if this condition holds. The parameterp
is intendedto provide large steps in the spaceof the variablesduring the early
iterations,its initial valuebeingprescribed.Further,whenno moreprogressseems
to bepossiblewith thecurrentvalue,p is reduced,exceptthat terminationoccurs
if p hasreachedits final value, which is also prescribed.Typical reductionsare
by a factor of ten, and p is neverincreased.Thetrust region radius A is either
set to p on every iteration,or is adjustedin a usualway (seeFletcher, 1987, for
instance),subjectto the bound A> p. The first andsecondof thesealternatives
areemployedby COBYLA andUOBYQA, respectively.

If F(~) is calculatedon a trust region iteration,thenthe inequality

P(alA) =F(z
1) —0.1 (Q(al1)—Q(aljl (2.5)

is tested. In otherwords, we ask whether the step from alt to alA reducesthe
objectivefunction by at least one tenth of the amount that is predictedby the
model, this amountbeing positive becauseof condition (2.4). The factor 0.1 on
the right handside of expression(2.5) canbe alteredto any otherconstantfrom
the openinterval (0,1). If the reduction(2.5) is achieved,thenthe next iteration
is also a trust regioniteration,which is begunafter the usualupdatingthat may
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reviseA, that causesthe new model function to satisfy Q(alA) =F(alj, and that
reordersthe interpolationpoints so that Za is the new ali•

If F(alA) is calculatedon a trust region iteration, but inequality (2.5) fails,
then A is decreasedif it exceedsp, and usuallyQ is revised,in order to include
the new valueof F in the nextmodel function. Further, alA is exchangedwith ~
wheneverthe reductionF(~j <F(z4) occurs,althoughmanyother trust region
algorithmsmovethecentreoftheregion(2.2) only if thereductionin theobjective
functionis sufficiently large,which meansthat F(alA) satisfiesan inequality ofthe
form (2.5). An advantageof preservingthe conditions (2.1) is that, if F(alA) is
calculated,thenthe strict inequalities

Q(alA) < Q(~i) = F(~1) =F(al~), i=1,2,. . .,m, (2.6)

hold. Thus the equations(1.1) ensurethat alA is not one of the interpolation
points ~ i=1,2,...,m.

If condition (2.4) or (2.5) fails on a trust region iteration,then it is assumed
that the next iterationwill be a model iteration,so the algorithmmakesa pro-
visional choice of the index t of the interpolationconditionthat will be replaced.
Specifically, this choice of t is an integerfrom [1,m] that hasthe property

LIalt—aliH = max{Ilal~—al1II i=2,3, . . . ,m}, (2.7)

and the ratio Halt—alhII/p is comparedwith a prescribedconstantj3> 1. In the
early versionsof our algorithms,the decisionto employ a modeliterationnext is
always taken if the ratio exceeds13. Eachmodel iterationreplaces~ by ~, as
mentionedalready, the choice of ~ being givenlater. The UOBYQA software,
however,tries to avoidthe following disadvantageoftheearlier versions.Because
of the test (2.4), we expectmost of the distancesH~ ~ i = 2,3,...,m, to
exceed~p whenp is going to be decreased.Moreover, the usualreductionsin p
areby a factor that is greaterthan 213. Thus, afterthe reduction,most of these
distancesexceed13p. It follows that at leastof magnitudem iterationsarerequired
to achievethe condition IIal±—mII=fip for thenew valueof p. This disadvantage
is tolerablefor COBYLA but not for UOBYQA, becausethevaluesof m aren+1
and ~(n-s-1)(n+2), respectively.Therefore,for eachintegeri in [2,in], UOBYQA
can generatea number,V~ say, that is an estimateof the contributionto the error
F (x) — Q(z), al e S, from the position of z. and it calculatesV~, say, which is
an estimateof the reduction in F that is excludedby condition (2.4), 0* being
zero if the secondderivativematrix of Q is not positive definite. Then a model
iteration is appliednext if and only if both llal±—al1h> /Sp and V,~> Th. hold for an
interpolationpoint x,~. Detailsaregiven in the descriptionof UOBYQA (Powell,
2000).

The only remainingsituation that canhappenon a trust region iteration is
that condition (2.4) or (2.5) fails, and it is found that thereis no needto improve
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Q by a model iteration. Thenwe askwhetherthe work using the currentvalue
of p is complete. The answeris negativeif the distance IjalA — ali exceedsp,
which is possiblewhen A > p is allowed. In that casethe currentiterationwill
have calculatedF(alA), and will have decreasedA to a value that satisfies~
A < IlalA —~~jI, so a trust region iteration with the new A is performednext.
Otherwise,thevalueof p seemsto be~preventingor impairingprogress.Therefore
terminationoccursif p hasreachedits final value, or p is reducedand, because
the testsof thepreviousparagraphsuggestthat the quadraticmodel is good, the
next iteration is also a trust region iteration.

We now turn our attention to the Lagrangefunctions of the system(1.1),
becausethey arehighly useful to COBYLA and UOBYQA for maintainingnon-
singularity of the system,as shownin the next paragraph,and for updatingQ
whenoneof theequations(1.1) is replacedby a newinterpolationcondition. The
definition of the Lagrangefunction Ai(al), ±zie R~, where i is any integer from
[1, in], is that it is the elementof the spaceM of model functionsthat satisfies
the equations

=
6yi, j1,2,. ..,in, (2.8)

3.~ being the Kroneckerdelta. Thesefunctions are also important to the cal-
It

culationof the the numbers9~, i = 2,3, ... , in, by UOBYQA, mentionedin the
paragraphthat includesexpression(2.7).

It is elementarythat the system (1.1) is singular if and only if a nonzero
elementof M vanishesat all the points all, ~= 1, 2,. . . , in. The positionsof the
interpolationpointsof the first iterationhaveto bechosenin a way that provides
nonsingularity,this requirementbeing addressedin Section 3, and we find by
inductionhow to preservenonsingularity. Assumethat singularityoccursfor the
first time whentheinterpolationpoint~ is removedfrom the set {ali, ...... ,

and let ~ be the new interpolationpoint, which is alA or on a trust region
or a model iteration, respectively. Then, if the function t C M, say, vanishes
on the new set of points, it must vanish on the set {ali, al2• . . , zm}\{alt}, which
implies that t is a multiple of the old Lagrangefunction it(al), alE 7?”, because
the old systemof equationsis nonsingular. It follows that the singularityof the
new systemis equivalentto the condition t~(~) = 0. Thereforeour algorithms
pick t and ~ in ways that ensurethat £t(zfl is nonzero. Further, by relating
Lagrangefunctionsto ratiosof determinantsof matricesof systemsof equations,
it can beshownthat relatively largevaluesof jAt(~)i areadvantageous.

We recall that, whenthe decisionis takenon a trust region iterationthat a
model iterationwill be performednext, the integer t C [2,m] hasbeenselected,
but a new interpolationpoint ~ =~ is required.It is chosenfrom theregion

{Z.: lZ—aliL~=P}, (2.9)

andthe remarkat the end of thelast paragraphsuggeststhat it is optimalto let
~ be the vectorthat maximizesL~t ($ K al C A/, which is donein both COBYLA
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and UOBYQA. This task is straightforwardbecausethe functions4 and —R~ are
both elementsof M, and the requiredalcj minimizesone of thesefunctions on
Pt. Thereforewe can calculatealQ by two applicationsof the procedurethat is
availablealreadyfor minimizing the model function Q(al), alES.

On a trust region iterationthat calculatesF(alA), the new interpolationcon-
dition is usually included in themodel function,by replacingthe point alt by ~,

wherethe integer t hasto be chosen. Nonsingularityis preservedby requiring
At(alA) to be nonzero,and in principal we seek a large valueof 14(alJI. On the
otherhand, wewish to removeinterpolationpointsthat are far from alt, and the
Lagrangefunctions of suchpoints are relatively small in the region8, becauseof
their zerosat the interpolationpoints in S. Thereforet is set to an integer in
[1,in] that hasthe property

£2(Ilalt—z21) 14(alJI = max{r2(I~~—~II) IAdal2L i=1,2, . . . ,m}, (2.10)

where £2 is a weighting function, and where ~ is the choice betweenalt and
Xa that is the next vector x1. In UOBYQA, for example, £2 is the function
£2(r) = max[1, (r/p)

3], r > 0. We do not expect the updating to improve the
quadraticmodel, however, if 14(alA)I =1, K~—al2I =p and alA #al* hold for this
choice of t, which is the unusualcasewhen Q is not updated. Otherwise, alA

replacesalj in the interpolationequations(1.1).
The updatingof Q is simple if the Lagrangefunctionsare available. Indeed,

when the interpolationequationQ(alt) = F(al±)is replacedby Q(al~)= F(s), the
changeto Q hasto be a multiple of 4, in order to preservetheotherinterpolation
conditions. Further,the multiplying factoris definedby Q~

0~(~)=F(~fl, where
Quew is the new model function. Theseremarksprovidethe formula

Qnew(al) = Qold(al) + F(alfl

—

£t(al~) — 4(al), alFR-”, (2.11)

for generatingQnew from the currentmodel function Qold. Our trust regionmeth-
odsstorethecoefficientsof Qold andall theLagrangefunctionsexplicitly, the total
numberof coefficientsbeingaboutin

2. Thenthecoefficientsof Qnew areobtained
from formula (2.11) in only 0(m) operations.

All the Lagrangefunctionsare updatedtoo, by formulaethat are analogous
to expression(2.11). Specifically, the functions

£~(al) = A~(al)/4(al8 ‘i,., ~eiz”, (2.12)

g(al) = 4(a) — £i(alflA~(al), i#t J
are the new Lagrangefunctions, as they satisfy the Lagrangeconditions of the
newinterpolationpoints. Thusthework of updatingall the coefficientsis 0(m2),
which may be optimal, because,if the system (1.1) is written in matrix form,
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then the matrix has in2 elements. The valuesA~(~), i = 1,2, ... , m, have been
calculatedalreadyon atrust regioniteration,becausetheyarethenumbers£~(alj,

i = 1,2,... ,m, of expression(2.10). Moreover, the updatingmethod (2.12) has
a stability property that prevents damagefrom an accumulationof computer
rounding errorsover a sequenceof iterations (Powell, 2001),the propertybeing
derivedfrom the remarkthat the methodgives the Lagrangeconditions£(~)=

6it, i= 1,2,...,m, for arbitrary functions4 eM, providedthat £t(alfl is nonzero.
On the otherhand, whenM is the spaceof quadraticpolynomials,the fact that
m is of magnituden2 is very unwelcome.

3. The spacesof model functions

The GOBYLA softwarewaswritten by the authorfor constrainedminimization
calculations(Powell, 1994). It was applied to the test problemsof Section 4,
which areunconstrained,becauseit was availableand easyto use. Someof the
resultsof thoseexperimentsarereportedand discussedlater, becausethey are
instructive. We recall that COBYLA is a trust region method of the type that
is beingconsidered,and that its spaceM of model functionsis composedof all
linear and constantpolynomialsfrom R~ to 7?.. Thereforethedimensionm of M
is just m+ 1, and all the proceduresof Section 2 areso easyto implementthat
the amount of routine work of eachiteration is only of magnituden2. At the
beginningof the calculation,one of the interpolationpoints, alt say, is given by
the user,and p is set to its prescribedinitial value. Thenthe otherinterpolation
points of the first iteration areal~+i = ali+P~~, j—i 2 ,n, where e~ is the
j-th coordinatevector in 7?.”. After calculating all the function valuesF(al~),
i = 1,2,...,rn, two of the points ~ areexchangedif necessaryso that condition
(2.1) holds. Henceall the nonzerocoefficients of the Lagrangefunctionsof the
first iterationarefound in only 0(m) operations.Theseremarksshowthat, when
COBYLA is employedfor unconstrainedoptimization, then it is usual for most
of the time of the computationto be spent on the calculationof values of the
objectivefunction.

It hasbeenmentioned,however, that linearpolynomialmodelsareunsuitable
for unconstrainedcalculations.The following exampleshowsa seriousdeficiency
of this choiceof M. Let F be the quadraticfunction

F(al) 4+4Pz~, alE7Z2, (3.1)

whereP is a very largepositive constant,and let the interpolationpoints be the
vectors

al
2 (IY—~P) and (PP—~P), (3.2)
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for the currentvalueof p. Thepositionsofthesepoints havebeenchosenso that
thereis noneedfor a model iteration,andthechoiceof F satisfiescondition (2.1),
the relevantfunction valuesbeing F(al1) = F

2p2 and F(al
2) = F(~) = ]7

2p2+ ~p2.
Thus, due to symmetryaboutthe x

1-axis and F(al2) > F(~1), the interpolation
equations(1.1) define a linear polynomialQ that decreasesmonotonicallyas x1
increases.Further,the minimizationof Q within the trust region (2.2) provides
alA =al1+A~1, so F(alA) exceedsF(al1) on a trust region iteration. Therefore,in
the usual caseA = p, either terminationor a reductionin p occurs. Termination
is unwelcome,becausethe distancefrom a1 to the solution of theunconstrained
problemis Pp. Alternatively, if A = p persistsas in COBYLA, thenthe number
of iterationsfor thenew valueof p is typically of magnitudeuP, where a is the
factor by which p is reduced.Both of thesesituationsareunsatisfactorywhenF
is very large.

Thereforemostof our attentionis givento model functionsthat arequadratic
polynomials. The useof interpolationequationsof the form (1.1) for defining a
quadraticmodel is proposedby Winfield (1973),but hedoesnot providea robust
way of maintainingnonsingularityin the systemof equations.Nonsingularity is
intimately relatedto valuesof Lagrangefunctions, as shown in formulae (2.11)
and (2.12). These relationswere the reasonfor beginningthe developmentof
UOBYQA aboutten years ago. Two major changesto the original versionare
the introduction of A =p insteadof the single trust region radius A = p, and
performingfewer model iterations,by addingthecondition9,~ > 9~ to Hal±—al~[I> /Sp,
asstatedsoonafter expression(2.7). The materialof Section 2 is basedon the
techniquesthatareemployedby thecurrentversionof UOBYQA. It follows that,
becauseM containsall quadraticpolynomials from 7?.” to 7?., the amount of
routinework of an iterationis 0(n

4). Again theuserhasto pick an interpolation
point for the first iteration,a

1 say, and theother interpolationpointsof thefirst
quadraticmodel are generatedautomatically,by taking steps of magnitudep
from a~ in thespaceof thevariables. Therearetwo stepsalongeachcoordinate
direction, which define the componentsof the gradient vector VQ(a1) and the
diagonalelementsof the secondderivativematrix 7

2Q. Theneachoff-diagonal
element (V2QXy, i # j, is obtainedfrom a single step of the form ±pe~~ PQJ,
the choice of signsand other detailsbeing given in Powell (2000). That paper
alsopresentssomenumericalresultsto demonstratetheaccuracyandefficiencyof
UOBYQA for objectivefunctions of up to 20 variables. A few experimentswith
largervaluesof ii are includedin the next section.

If theobjectivefunctionhasa sparsesecondderivativematrix, which happens
in many applications,then it is advantageousto let M be the linear spaceof
quadraticpolynomialswhosesecondderivativessatisfy thesparsityconditidnsof
V2F. Thus thedimensionm of M becomesthe sum of n+1 and the numberof
matrix elementsthat may benonzeroon the diagonalandin thelower triangular
part of V2F,everysecondderivativematrix beingsymmetric. Further,nosparsity
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conditionsareallowedon the diagonalof V2F in unconstrainedcalculations.The
techniquesof Section 2 remainvalid. In particular,the applicationof formulae
(2.11)and (2.12) to updateQ and all thecoefficientsofall theLagrangefunctions
still takes 0(m2) operations. Therefore this task may now be less expensive
than the solutionof the trust regionsubproblemat the beginning of Section2
by the methodof Mor6 and Sorensen(1983). The interpolationpoints of the
first quadraticmodel are generatedin the way that is describedin the previous
paragraph,except that the stepfrom a~ of theform is omitted if and
only if (V2Q)~~ is requiredto be zero. A version of UOBYQA that includesthis
sparsity, namely UOBSQA (UnconstrainedOptimization By SparseQuadratic
Approximation) is employedin someof the numericalexperimentsof the next
section. Then the questionunder investigationis not the reduction in work on
eachiteration,but the decreasethat occursin thetotal numberof iterations,due
to theextrainformationaboutthe objectivefunctionthat is givenby the sparsity
conditions.

Oneothermethodis also consideredin the experimentsof Section4, namely
UOBDQA (UnconstrainedOptimizationBy DiagonalQuadraticApproximation),
which hasbeenintroducedalready in Section 1. In this method,we let M be
the 2n+1 dimensionalspaceof quadraticpolynomialsthat havediagonalsecond
derivativematrices,even if there is no sparsity in V2F. All the techniquesof
Section 2 are applied, and the routine work of eachiterationtakes only 0(n2)
operations,including the algorithmof Mor4 and Sorensenfor solving the trust
regionsubproblem,becauseV2Q is a diagonalmatrix. A causeof concern,how-
ever, is that the estimateof the error of the approximationQ(a)~F(a), ad?tm,
that is employedby UOBYQA and that is inheritedby UOBSQA, is no longer
valid, becausethe method of estimationrequiresthe error to be zerowhenever
F is a quadraticpolynomial (Powell, 2001). We continue, however, to usethe
formula for the estimateas if it were true, in order to discoverexperimentally
whetherUOBDQA may be useful in practice. Therefore,if UOBDQA and the
diagonalversionof UOBSQA areappliedto the sameobjectivefunction,with the
sameinitial vectorof variablesand thesameinitial and final valuesof p, thenthe
samesequencesof vectorsof variablesarecalculated,including the interpolation
pointsof thefirst quadraticmodel. Our distinctionbetweenthesetwo methodsis
that, in the tablesof numericalresultsthat aregiven later, the nameUOBSQA
is reservedfor the casewhenthe sparsitystructureof V2Q, Q EM, is the same
asthe sparsitystructureof V2F(a), ac??tm.

Whenthesestructuresaredifferent, then theperformanceof UOBDQA may
be inefficient in ways that aresimilar to the deficienciesof COBYLA that are
shown in the secondparagraphof this section. For example,we let F be the
quadraticfunction

F(z) (zi+z
2)

2 +6P(x
1—x2)

2, ac??2, (3.3)
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whereP is still avery largeconstant,andwe let in
1, a2, z~, a~anda~ be thepoints

/Pp’\ ( Pp—p ( Pp\ / Pp+p and Pp , (3.4)

Krp)’ Pp )‘ K Pp—p)’ K Pp ) Pp+~o )
respectively,for thecurrentvalueofp. Again thereis no needfor amodel iteration
and condition (2.1) holds. Indeed, in addition to F(a1) = 4P

2p2, we find the
function values

F(a
2) = F%) — 4P

2p2 + (l+2P)p2

F(a
4) = F(~) — 4P

2p2 + (1 + br) ~2 f• (3.5)

HenceUOBDQA generatesa quadraticmodel that can be written in the form

= F(a
1) + 4Pp(di+d2) + (1+6P)(d?±dTh, del?

2. (3.6)

Thus the solution a~=.of the trust region subproblemis the vector of variables
that minimizesQ(a), ad??2,both componentsof ZA—al being—2Pp/(1+6P).
It follows that condition (2.4) fails, so either termination or a reduction in p
occurs,althoughthe distancefrom ai to the optimalvectorof variablesis x~~Pp.
Therefore,unfortunately,someof theseveredisadvantagesof COBYLA applyalso
to UOBDQA.

4. Numerical results

Themethodsof Section3 were appliedto threeunconstrainedoptimizationprob-
lems with sparsesecondderivativematrices,that allow the numberof variables
n to be arbitrarily large. Theseproblemsare calledARWHEAD, BDQRTIC and
CHROSEN,thefirst two beingTestProblems55 and61 in theAppendixof Conn
et at (1994),andthelast one beingtakenfrom Toint (1978),exceptthat someof
his parametersareset to one. The nameARWHEAD indicatesthat the nonzero
elementsof V2F have an arrowheadstructure,F beingthefunction

FQr) Z{(4+432—4x~+3} xe??tm. (4.1)

The BDQRTIC problemhastheobjectivefunction

n—4

F(x) = Z { (4 + 2< + 34+2+ 444 + 59)2 — 4x~ + 3}, ad??.”, (4.2)
i=1

which is an extensionof ARWHEAD that addsa band matrix of width seven
to the previous arrowheadstructureof V2F. Moreover, the nameCHROSEN

12
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TestProblem COBYLA UOBYQA UOBSQA UOBDQA

ARWIrIEAD, n=10 280 219 118 105
ARWHEAD n=lS 522 458 170 164
ARWHEAD, n=20 678 837 225 260
ARWHEAD, n=25 900 1320 296 277

BDQRTIC, n=10 1106 434 350 288
BDQRTIC, n=15 2323 834 594 385
BDQRTIC, n=20 3616 1541 855 534
BDQRTIG, n=25 5619 2302 1016 705

CHROSEN, n=1O 4661 454 247 3652
CHROSEN, ri=1S 6935 1064 431 4590
CHROSEN, n=20 8912 1897 553 5871
CHROSEN, m=25 10861 2565 736 5943

Table 1: Numbersof valuesof F in the caseswhenV2F is sparse

denotesChainedRosenbrock,which doesnot requireanexplanation,F beingthe
function

F(a) = Z{4(xi
14)2+(1xi)2}, ad??”, (4.3)

i=2

so V
2F is a tridiagonalmatrix. We see that all three objective functions are

quartic polynomials, and that, when UOBSQA is applied, the dimensionm of
the spaceM is 3n, 6n—9 or Sri for the choice (4.1), (4.2) or (4.3), respectively,
assumingn=5 in BDQRTIC.For eachtestproblemandeachtrustregionmethod,
the numbersof variables ti = 10, ii = 15, ri = 20 and ii = 25 were tried. In every
case,we let the initial and final valuesof p be 0.5 and 10—6. Further, asin the
referencescited above, the initial vector of variables was set to ~, e or —e for
ARWHEAD, BDQRTIC or CHROSEN,respectively,where all the componentsof
cc??” areone.

The numbersof valuesof F that occurredin thesecalculationsare reported
in Table 1. A comparisonof the UOBYQA and UOBSQA columns shows the
reductionsthat canbeachievedin thenumbersofiterationsby taking advantageof
sparsityin V2F. Indeed,it is possiblethat thesenumbersareof magnitudeti2 and
ri for UOBYQA and UOBSQA, respectively.No moreattention will be given to
UOBSQA in this section.The performanceof COBYLA is betterthantheauthor
expected,especiallyon theARWHEAD testproblem,andthenumberofiterations
seemsto be proportional to it in the CHROSEN experiments. The successof
UOBDQA on both ARWHEAD and BDQRTIC is staggeringand unexplained.
Thesecalculationswere thefirst applicationsof UOBDQA that weretried by the
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author,so they gave much encouragementfor further work. The poor results
of this methodfor CHROSENbecomeless bad as it increases,but somedamage
occursfrom thedisadvantagesthat arethesubjectof thelastparagraphofSection
3. Specifically, for every it in the CHROSEN experiments,the distancefrom
the final vector of variablesof UOBDQA to the optimal vector, namely e, is in
the interval [5.2x lOt 7.4x 1071, although the final value of p is 10—6. The
correspondinginterval for COBYLA is [9.0x lOt 1.1 x it4]. Goodaccuracyis
obtained,however, in all theother calculationsof Table 1.

We also try some objective functions F(a), ~ e 7?.”, that are periodic, so
they havemaximaand saddlepoints in addition to minima. Indeed,we apply
COBYLA, UOBYQA andUOBDQA to severalcasesofthetrigonometricfunction

V “‘2

F(~) = Z{b~~Z(Sigsin¾+C1ico5Zi)I~ zc??”, (4.4)

that is takenfrom FletcherandPowell (1963). Here v is an integerthat is at least
it, and the parameters~ and C~g, 1 =i =v, 1 =J=it, are independentrandom
integersfrom the interval [—100,100]. Further, a vector~ is chosenrandomly
from [—r,vr]” clZ”, and then the parametersb~ 1 <i < v, are definedby the
equationF(±)= 0, 50 ±is an optimal vector of variablesfor the unconstrained
minimizationofF. The requiredinitial vectorof variablesis generatedby making
a randomperturbationto every componentof ±,eachperturbationbeingfrom
the distributionthat is uniform on [—0.1w,0.1w]. From now on, we let the initial
and final valuesof p be 0.1 and it6, respectively.Thus, apartfrom the random
numbers,eachproblemandthe datafor thetrust regionmethodsaredefinedby
it and v. The effectsof randomnessare testedby generatingfive different setsof
randomnumbersfor every ti and it Solving thesefive different versionsof the
optimization problemby any one of our methodsusuallyprovides five different
valuesof thenumberof times theobjective function is calculated.Justthe least
and greatestof thesefive valueswill be reportedTables2, 3 and 5. The choicesof
randomnumberswerepreserved,in order to applythethreedifferent trust region
methodsto the sametest problems. We let the numberof variablesbe ti =

n= 10 and it= 20, and we comparethe dependenceof the minimization of
the function (4.4) on two different choicesof v, namelyv it and ii = 2ri.

The resultsof theseexperimentsare given in Table 2. We seethat the perfor-
manceof UOBYQA is satisfactoryfor all the testproblems,but that the worst
resultsof COBYLA and UOBDQA when v = ti are remarkablybad. The rea-
son is that a largevalue of P in example(3.1) or (3.3) is analogousto severe
ill-conditioning in the secondderivativ~ matrix V2F(~). Moreover, becausethe
termsinside the bracesof expression(4.4) are zero at x = ~ we find the identity
V?F(~3~2ZTZ,whereZ is the vx ti matrix that hasthe elements

S
1~cos±g—Qsint~ 1=i=v, 1=j=ri. (4.5)
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TestProblem COBYLA UOBYQA UOBDQA

v=it, ri=3
v=n, it=5

v=it, n=10
v=ri, it=20

89—18792
482—171206
4521—53942
19533—67726

34—112
60—103

209—625
736—1448

105—36553
501—38506

6017—97136
21473—190196

v=2n, it=3
v=2it, it=5
v=2n, it=10
v=2it, ri=20

92—387
165—450
360—616

867—1404

33—37
51—56

139—158
416—483

129—587
233—512

539—1036
1158—2019

Table 2: Numbersof valuesof F for the trigonometricfunction (4.4)

Therefore,letting~7’denotethe i-th row of Z, the leasteigenvalueof thepositive
definite matrix V2F(~) is thequantity

2min{Z(4TQ)2: QER”, lktII=1}. (4.6)

It follows that COBYLA and UOBDQA tendto be highly inefficient if a vector
v c 7?.” is nearly orthogonalto all the rows of Z. This canhappeneasilydue to
the randomnumbersin the casev = it, but, in the alternativecasev — 2n the
probabilitythat V2F(~) is well-conditionedis high. Thusthe entriesin thesecond
halfof Table 2 dependless stronglyon the randomnumbers.Further,if themost
difficult of the five test problemswith v = it = 3 is deleted,thenthe COBYLA
and UOBDQA resultsin the first row of Table 2 become89—3778 and 105—1207,
respectively.Similarly, if the third of the five problemswith v= it = 5 is deleted,
thenthe COBYLA andUOBDQA entriesin the secondrow of the table become
482—1135and501—1400. It seems,however, that UOBYQA is goodat copingwith
ill-conditioningwhenthe numberof variablesis small.

Table 2 shows that GOBYLA is more efficient thanUOBDQA at minimiz-
ing the function (4.4) with i’ = 2n. This conclusionwas unexpected,because
COBYLA employslinear model functions,while UOBDQA payssomeattention
to curvature. On the otherhand,linearmodelsprovidesuitablesearchdirections
for unconstrainedminimization if V2F is closeto a multiple of the it x it unit
matrix, and there is a tendencyfor the matrix 2ZTZ of the previousparagraph
to have this property if v is increasedfor fixed it. Thereforewe considersome
other test problemswherethegeneraldiagonalquadraticmodel of UOBDQA is
particularly useful. Specifically,we let F

0ld be the function (4.4) with v = 2it, we
let D bean six it diagonalmatrix whosediagonalelementsarerandomnumbers
from the distribution that is logarithmicon [1,10], and we employthe objective
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TestProblem COBYLA UOBYQA UOBDQA

v=2it, it=3
v=2it, si=5
v=2it, it=l0
v=2si, si=20

500—5329 34—63 155—818
991—4686 74—101 258—944

4069—10948 198—249 708—1613
8101—16662 596—665 1526—2762

function

Table 3: Numbersof valuesof F for the scaledtrigonometricfunction

Fnew(a) = FOld(D’a), zc7ZTh. (4.7)

Theonly otherchangeto the v= 2m calculationsof Table 2 is that, havingchosen
an initial vectorofvariables 2 say, in theway that is describedsoonafterequation
(4.4), we let the initial vectorof variablesfor the new calculationbe D 2 which
allows for the scalingthat hasbeenintroduced.The initial and final valuesof p
remainat 0.1 and 10—6, however,becauseof any diagonalelementsof D that are
closeto one. Table 3 presentstheresultsof thesenewexperimentsthat correspond
to the z.’ = 2n entriesof Table 2. We seethat UOBYQA and UOBDQA require
a few more iterationsthanbefore,but that the efficiency of COBYLA hasbeen
destroyedby the introductionof somemild diagonalscaling. Indeed,theseresults
restorethe belief of the author that COBYLA is unsuitablefor unconstrained
minimizationcalculations.

We recall that the main advantageof UOBDQA over UOBYQA is that the
amountof routinework of eachiteration is only O(si2) insteadof O(it4). Thus
UOBDQA is faster than UOBYQA at solving the it = 20 problemsof Table 3,
although it requiresaboutthreetimes as manyvaluesof F. Detailsaregiven in
Table 4, which comparesthe computationtimes and numbersof function evalu-
ationsof thesetwo trust regionmethods,using the objective functionand initial
datathat aredescribedin thepreviousparagraph.Theresultsarenot very sensi-
tive to therandomnumbersthat occur. Therefore,for eachvalueof it, the entries
in Table 4 are averagesfor the five test problemsthat aregeneratedby different
choicesof the randomnumbers. The given times were measuredin seconds,by
the Fortran DTIME instruction, from the call of UOBYQA or UOBDQA until
the return from the subroutine. All thecalculationswere run on a SunUltra 10
workstation,which allows the inclusion of problemswith 40 variables,but the
amountof work of UOBYQA for n= 80 would beprohibitive. We seein the table
that UOBYQA becomesimpracticalas zi. increases,but that UOBDQA may be
useful for the largervaluesof it. On the other hand, we havefound alreadythat
sometimesUOBDQA is very inefficient, as in the v = it calculationsof Table 2
and in the exampleof the last paragraphof Section 3. Thereforeanothertrust
regionmethodis consideredbriefly in the next section.
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Table 4: Averagesof timings and#F for the scaledtrigonometricfunction

5. LeastFrobeniusnorm updating

The main disadvantagesof UOBYQA and UOBDQA are that the work of each
iteration of UOBYQA takes of magnitudeit

4 operations,while the efficiency
of UOBDQA is often impairedby restrictingthe model functions to quadratic
polynomials with diagonalsecondderivativematrices. The amount of work of
UOBYQA occursbecauseeachquadraticmodel dependson ~(it-i-1)(it+2) values
of F, so now we prefer to employ the interpolationconditions

= F(a~), i=1,2,. . .,m, (5.1)

where~Ii is a given integerthat is only of magnitudeit. On the otherhand, we
alsoprefer to include all polynomialsof degreeat most two from lZ~ to ?Z in the

K spaceM, asin UOBYQA, so the dimensionof M is m=~(n+1)(n+2).
Waysof constructingquadraticmodelsfrom fewerthanm conditionsareusual

in algorithmsfor unconstrainedoptimizationwhenfirst derivativesofF areavail-
able. Then a typical iteration changesthe best vectorof variablesso far from

~k to fl±i, say, where k is the iteration numberfor the moment. The gradient
vectorsVF(a~) and MF(ak+1) are calculated.Further, letting Qo~d and Qnew be
the quadraticmodelsat the beginning and end of the iteration, Q~, is given
the curvatureinformationthat is providedby the changein gradients.The pro-
cedurethat takesup the remainingfreedomin Qnew can often be expressedas
the minimization of somemeasureof the differencebetweenQnew and Qold. In
particular,thesymmetricBroydenformula (seeFletcher,1987, for instance)gen-
eratesthe secondderivativematrix V2QIIeW by minimizing the Probeniusnorm
j)V2Q~

8~—V
2Q

01d~~p,subjectto symmetry andthe quasi-Newtonequation

(V
2Qnew) (ak±1— ak) = rF(a~±

1) — MF(zk). (5.2)

In otherwords, thesum ofsquares

Z Z {(V2Qnew)ij — (V2Qold)ih}
2 (5.3)
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is madeassmall aspossible,subjectto theconstraintsthat havebeenmentioned.
We aregoing to considerbriefly whethera version of this updatingmethodmay
be useful for unconstrainedminimizationwithout derivatives.

Thereareusuallym—~ii independentdegreesof freedomin the solutionof the
equations(5.1) by a quadraticpolynomialQ cM. Let Qnew be themodelfunction
that is beinggenerated,and let Qold be the model function at the beginning of
the current iteration. As in the previousparagraph,we take up the freedom
in Qnew by minimizing the sum of squares(5.3). Further, we ensurethat Qnew

is well definedby imposing the following two conditions on the positionsof the
interpolationpoints~ i1, 2,..., ~5i.Firstly, we requirethe (it+1) x5ii matrix

(5.4)

1•

to have rank n+1, becauseotherwisea nonzeropolynomial, p say, of degreeat
most one,would satisfyp(a~)= 0, i= 1,2,... , lii. ThenQnew couldbe changedby
theadditionof anymultipleofp, which would preservetheinterpolationequations
without alteringV2QDeW. Secondly,letting b~, j = 1,2,... , m, be a basis of M,
we requirethe35~ >c m matrix .8 with the elements

= b~(a~), 1< i <~i 1<] =m, (5.5)

to haverank~3i.Thustheequations(5.1) haveasolutionfor any right handsides.
It follows from theseconditionsthat~5iis in theinterval [it+1, in], anda technique
for satisfyingthem is given later. The freedomin the initial quadraticinterpolant
Q is removed by minimizing IIV2QIIp.

It would be inconvenientto includefirst derivativesin the expressionthat is
minimizedto takeup thefreedomin Qnew, partly becausethevalueof VQnew(a)

requiresa particularvector z c %fl to be chosen. Moreover, the proposeduse
of Frobeniusnorms provides a very welcomeprojection property when F is a
quadraticpolynomial. Specifically, in this case,the updatingof the quadratic
model gives the inequality

— V2QnewLLtr jV2F — V2Qo1dj[~ — IIV2Qnew — V2Qg,ldj~~

=11V2F — V2Qo1dLI~, (5.6)

which is provedby the following elementaryargument.The differenceFQnew is
a quadratic polynomial that vanishesat the pointsa~, i 1, 2,. . . , ~51.Therefore
the construction of Qnew implies that the least value of the function

iI(V2Qnew — V2Q
0Id) +9(V

2Fr V2Qnew)?l~, 6cR., (5.7)
occurswhen6 is zero,which is the condition

f f (V2Qnew — V2QOid)~ff (V2F — V2Qnew)ij 0. (5.8)
Z1 j1
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Hence the first line of expression (5.6) is true, and the secondline is obvious.
Thus, in the quadratic case F cM, we can take the view that the errorsof the
approximationsQ ~ F decreasemonotonicallyas the iterationsproceed,except
for the effectsof computerroundingerrors.

Thecalculationof Qnew in theway that hasbeensuggestedis a quadraticpro-
grammingproblemwith only equality,constraints.Thereforeit canbe expressed
as the solution of a linear systemof equations.Further, the KKT conditionsof
this problemimply that the secondderivativematrix of Qnew hasthe form

771

V2Qnew = V2QOId + Z AyxyaT, (5.9)
:1=1

where the Lagrange multipliers Ag, j = 1, 2, ... , iii, satisfy XA = 0 X being the
matrix (5.4). Therefore, if we write Qnew asthe quadraticpolynomial

Qnew(a) ga-i-i’ ‘7V2Qnew)a, zcRn, (5.10)

then, because of the interpolation conditions (5.1) and XA = 0, the coefficients
A El?tm, g

0E1? and gc7Z
71 are defined by the (~+n+1)x(rn+n+1) system of

equations
(A xT)(A)(E.) (5.11)

where A is the F~x fii matrix that hasthe elements

lSi,j<ffV (5.12)

where ~ is the vector in R.n+l whosecomponentsarego followedby thecomponents
of g, and where the componentsof F are the known function valuesF(a~), i =

1,2,. . . , 53~i. Thus the amount of work to calculate Qnew by a direct method is of
magnitude (~5i+n)3, which is a major improvement over UOBYQAfor sufficiently
large m, due to our restriction ~ii=O(n). Further, the author expects to develop an
updating technique for generating the sequence of quadratic models that is faster
than the use of direct methods. Another improvement over UOBYQAis that the
method of this sectionrequiresless computerstorage.Moreover, equation(5.12)
implies that A is not only symmetricbut a]sohasno negativeeigenvalues.

The author startedhis researchon the materialof this sectionin January,
2002, 50 it is not complete.The reasonfor jumping thegun in thepublicationof
resultsis that it is easyto includethe leastEtobeniusnormupdatingmethodin a
versionof UOBDQA. Specifically,we retain thenumberof interpolationequations
m= 2ri-i-1, but, insteadof applying formula (2.11), the new algorithmgen~rates

Qnew by the method of the previousparagraph.HenceV2QUew is usually a full
matrix, althoughthechoiceof the initial interpolationpointsby UOBDQA causes
V2Q to be diagonalat the beginningof the first iteration. Thereforeno sparsity
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_________________________________________________________________________________________ — . .. . . . ii

TestProblem

Table 2 (v=ri) Table 2 (v=2n) Table 3 (v=2n)

n=3
n=5
n=10
n=20

37—141 32—60 46—66
95—232 56—87 114—186

303—1067 156—230 326—395
1370—3316 428—474 785—941

Table 5: Numbersof valuesof F for the new version of UOBDQA

is assumedwhensolving thetrust regionsubproblemof Section 2 by themethod
of Mor~ and Sorensen(1983). All other featuresof UOBDQA arepresentin the
new algorithm, however, including the useof Lagrangefunctionswith diagonal
second derivative matrices to control the changes that are made to the positions
of the interpolation points. Further, these Lagrange functions are still updated by
formula (2.12). Thus the ranksof the matricesX and B are always n+1 and iii,
respectively, as required. An objection to this way of maintaining nonsingularity
of the system (5.11), however, is that it is not invariant under orthogonal rotations
of the space of the variables. Therefore the new versionof UOBDQA is intended
only for some preliminary investigations of least Frobenius norm updating.

The new algorithm was appliedto all thetestproblemsof Section4. It may be
misleadingto draw conclusionsfrom the objectivefunctions of Table 1, because
of the effects of sparsity. We note, however, that the numbersof calculations
of F by the new algorithmwhenn. = 20, for example,are 341, 2779 and 825 for
ARWHEAD, BDQRTIC and CHROSEN,respectively,andthat comparisonswith
the entriesin Table 1 for othervaluesofn aresimilar to comparisonsin the case

= 20. Moreover, theresults for the objectivefunctions of Tables2 and 3 are
given in Table 5. We welcomethe fact that the changeto UOBDQA correctsthe
severeinefficienciesfor v=n that areshownin thelastcolumn of Table 2, which
suggeststhat the leastFrobeniusnorm updatingmethodis useful whenV2F is
ill conditioned. The other entriesin Table 5 also comparefavourablywith the
correspondingresultsof UOBDQA in Tables2 and 3. Experimentswith thenew
algorithmarealso promisingfor largernumbersof variables. Indeed,the change
to theupdatingprocedureofUOBDQA decreasesthen = 40 valueof#F in Table
4 from 6831 to 2179. Further,in similartestswith n=80andn=160,thevalueof

#F is reducedfrom 15147to 4623 andfrom 34854to 9688, respectively.Only two
sets of randomnumberswere tried for thenew algorithmwhenn= 160, however,
becausethe time of each experimentwas about 25 hours. Nevertheless,good
accuracyis achievedin both cases,the ratio of the initial to the final calculated
valueof F beingof magnitudeiC’~.

These results for n= 160 are reminiscentof an importantproperty of gradient
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methodsfor unconstrainedoptimizationthat wasdiscoveredabout30 yearsago. It
is that thesequenceofcalculatedvectorsofvariablescanconvergeat a superlinear
rateto a solutionof the optimizationproblem,a~. say, without V2Q converging
to V2F(a~), where Q is still the current quadraticmodel. Further, fewer than
n iterationsoftenprovideenoughaccuracyin practice,althoughn iterationsare
usuallynecessaryif V2Q is requiredto be a good approximationto V2F(L). In
the presentsituationwithout derivatives,we recall that a quadraticmodel has
~(n+1)(n+2) independentparameters.This numberis 13122 whenn=160, but
wehavefound in this casethat the new versionof UOBDQA employsfewer than
10000valuesof F, whenit is appliedto thescaledtrigonometricfunctionofTables
3 and 4. In otherwords,assumingthat theamountof work is proportionalto the
numberof functionvalues,the newmethodsolvestheminimizationproblemwhile
UOBYQA is constructingthe quadraticmodel for the first iteration. It follows
that trying to achievegood accuracyin all the parametersof the model may
be inefficient. Thereforewe expectthe updating techniqueof this sectionto be
highly usefulto thedevelopmentofnewalgorithmsfor unconstrainedoptimization
calculations.
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