百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

EVENTS

31 August 2023

Professor Xin Luo presented Understanding and Enhancing Pitch Perception with Cochlear Implant

Professor Xin Luo gave his seminar on “Understanding and Enhancing Pitch Perception with Cochlear Implant”.
Professor Xin Luo gave his seminar on “Understanding and Enhancing Pitch Perception with Cochlear Implant”.
Professor Xin Luo gave his seminar on “Understanding and Enhancing Pitch Perception with Cochlear Implant”.
Professor Xin Luo presented Understanding and Enhancing Pitch Perception with Cochlear Implant.

On 31 August 2023, Dr Xin Luo, Assistant Professor at the Auditory Implant Lab, Speech and Hearing Science, Arizona State University gave a presentation entitled Understanding and Enhancing Pitch Perception with Cochlear Implant.

Before diving into his research work, Dr Luo started by introducing the importance of pitch perception and the challenges faced when delivering pitch to hearing-impaired people with cochlear implant. The cochlear implant (CI) is a hearing prosthetic which sends electric stimulation directly to the cochlear based on envelope-based signal processing. Due to its limited number of excitation points, there are limitations in both place and temporal coding of pitch, which leads to poor pitch-related task performance of CI users. Dr Luo’s research aims at finding electrophysiological measures of the neural health of CI users, which would be important for the reliable performance of such difficult tasks, and CI stimulation strategies that would enhance pitch perception.

Dr Luo investigated the relationship between pitch sensitivity and neural health with CI users, and used a number of measures to assess the function of surviving spiral ganglion neurons (SGNs). Cathodic pulses are more likely to stimulate the peripheral processes of the SGNs, while anodic pulses directly activate the central axons. Dr Luo measured the polarity effect by subtracting the detection threshold for both pulses, and a large polarity effect indicates neural degeneration starting from the peripheral processes. The second metric used was multipulse integration (MPI), measured by contrasting the detection threshold for low and high rate pulses, correlates with speech recognition performance. It is also shown that electrically evoked compound action potential (ECAP), amplitude growth function (AGF) and interphase gap (IPG) offset are, in different degrees, indicators of SGN health, but other non-neural factors may have played a role in these measurements.

Dr Luo’s study revealed that thresholds for amplitude modulation frequency ranking (AMFR) and virtual channel ranking (VCR) were notably poorer on basal electrodes compared to apical and middle electrodes. This suggests that CI users face challenges in perceiving and discriminating pitch changes in the lower frequency range.

Finally, Dr Luo shared his work on the effect of pulse shape of electrical stimulation on pitch perception with CIs, in which he investigates whether the polarity effect has an effect on pitch sensitivity, and the effect of pulse shape on AMFR thresholds.

Dr Luo’s seminar showcased pioneering research, providing fresh insights into the intricate connections among neural health estimates, pitch sensitivity, and CI performance. His innovative work holds promise for advancing our understanding of auditory perception and improving the effectiveness of CI programming for individuals with hearing difficulties.

More Events
沙龙百家乐娱乐| 星期八百家乐的玩法技巧和规则| 百家乐官网全透明牌靴| 百家乐官网不倒翁注码| 百家乐官网赌场视频| 澳博足球| 网上百家乐真的假的| 宁晋县| 百家乐平台凯发| 郑州水果机遥控器| 百家乐官网英皇赌场娱乐网规则| 百家乐合作代打| 正规博彩通| 龍城百家乐的玩法技巧和规则| 百家乐官网常用公式| OK娱乐城| 大发888laohuji| 舟山星空棋牌官网| 百家乐赌博游戏| 网上百家乐官网是真的| 足球网络投注| 老虎机干扰器| 百家乐官网法则| 百家乐官网翻天qvod| 德州扑克2| 千亿百家乐的玩法技巧和规则| 百家乐官网线路图分析| 镇赉县| 大发888娱乐场 d188| 在线百家乐合作| 番禺百家乐官网电器店| 海阳市| 力博娱乐| 威尼斯人娱乐城最新网址| 澳门百家乐官网赌技巧| 百家乐官网星级游戏| 大发888手机真钱游戏| 百家乐官网凯时赌场娱乐网规则 | 大发888娱乐能借钱| 百家乐程序软件| 做生意房子选哪个方位|