百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

New! Sign up for our free email newsletter.
Science News
from research organizations

Cheap and efficient catalyst could boost renewable energy storage

Date:
September 19, 2023
Source:
Imperial College London
Summary:
Storing renewable energy as hydrogen could soon become much easier thanks to a new catalyst based on single atoms of platinum.
Share:
FULL STORY

Storing renewable energy as hydrogen could soon become much easier thanks to a new catalyst based on single atoms of platinum.

The new catalyst, designed by researchers at City University Hong Kong (CityU) and tested by colleagues at Imperial College London, could be cheaply scaled up for mass use.

Co-author Professor Anthony Kucernak, from the Department of Chemistry at Imperial, said: "The UK Hydrogen Strategy sets out an ambition to reach 10GW of low-carbon hydrogen production capacity by 2030. To facilitate that goal, we need to ramp up the production of cheap, easy-to-produce and efficient hydrogen storage. The new electrocatalyst could be a major contributor to this, ultimately helping the UK meet its net-zero goals by 2050."

Renewable energy generation, from sources like wind and solar, is rapidly growing. However, some of the energy generated needs to be stored for when weather conditions are unfavourable for wind and sun. One promising way to do this is to save the energy in the form of hydrogen, which can be stored and transported for later use.

To do this, the renewable energy is used to split water molecules into hydrogen and oxygen, with the energy stored in the hydrogen atoms. This uses platinum catalysts to spur a reaction that splits the water molecule, which is called electrolysis. However, although platinum is an excellent catalyst for this reaction, it is expensive and rare, so minimising its use is important to reduce system cost and limit platinum extraction.

Now, in a study published this week in Nature, the team have designed and tested a catalyst that uses as little platinum as possible to produce an efficient but cost-effective platform for water splitting.

Lead researcher Professor Zhang Hua, from CityU, said: "Hydrogen generated by electrocatalytic water splitting is regarded as one of the most promising clean energies for replacing fossil fuels in the near future, reducing environmental pollution and the greenhouse effect."

Testing tools

The team's innovation involves dispersing single atoms of platinum in a sheet of molybdenum sulphide (MoS2). This uses much less platinum than existing catalysts and even boosts the performance, as the platinum interacts with the molybdenum to improve the efficiency of the reaction.

Growing the thin catalysts on nanosheet supports allowed the CityU team to create high-purity materials. These were then characterised in Professor Kucernak' lab at Imperial, which has developed methods and models for determining how the catalyst operates.

The Imperial team has the tools for stringent testing because they have developed several technologies that are designed to make use of such catalysts. Professor Kucernak and colleagues have set up several companies based on these technologies, including RFC Power that specialises in hydrogen flow batteries, which could be improved by using the new single-atom platinum catalysts.

Using hydrogen

Once renewable energy is stored as hydrogen, to use it as electricity again it needs to be converted using fuel cells, which produce water vapour as a by-product of an oxygen-splitting reaction. Recently, Professor Kucernak and colleagues revealed a single-atom catalyst for this reaction that is based on iron, instead of platinum, which will also reduce the cost of this technology.

Bramble Energy, another spinout led by Professor Kucernak, will test this technology in their fuel cells. Both single-atoms catalysts -- one helping turn renewable energy into hydrogen storage, and the other helping that energy be released as electricity later -- therefore have the power to bring a hydrogen economy closer to reality.


Story Source:

Materials provided by Imperial College London. Original written by Hayley Dunning. Note: Content may be edited for style and length.


Journal Reference:

  1. Zhenyu Shi, Xiao Zhang, Xiaoqian Lin, Guigao Liu, Chongyi Ling, Shibo Xi, Bo Chen, Yiyao Ge, Chaoliang Tan, Zhuangchai Lai, Zhiqi Huang, Xinyang Ruan, Li Zhai, Lujiang Li, Zijian Li, Xixi Wang, Gwang-Hyeon Nam, Jiawei Liu, Qiyuan He, Zhiqiang Guan, Jinlan Wang, Chun-Sing Lee, Anthony R. J. Kucernak, Hua Zhang. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature, 2023; 621 (7978): 300 DOI: 10.1038/s41586-023-06339-3

Cite This Page:

Imperial College London. "Cheap and efficient catalyst could boost renewable energy storage." ScienceDaily. ScienceDaily, 19 September 2023. <www.sciencedaily.com/releases/2023/09/230919154859.htm>.
Imperial College London. (2023, September 19). Cheap and efficient catalyst could boost renewable energy storage. ScienceDaily. Retrieved June 2, 2025 from www.sciencedaily.com/releases/2023/09/230919154859.htm
Imperial College London. "Cheap and efficient catalyst could boost renewable energy storage." ScienceDaily. www.sciencedaily.com/releases/2023/09/230919154859.htm (accessed June 2, 2025).

Explore More

from ScienceDaily

RELATED STORIES


百家乐官网赌法| 百家乐官网反缆公式| 威尼斯人娱乐电子游戏| 真人百家乐官网套红利| 博彩论坛网| 百家乐官网天天乐娱乐场| 网上老虎机游戏| 百家乐高返水| 百家乐赌王有哪些| 临汾玩百家乐官网的人在那里找| 赌博粉| 娱乐城免费送彩金| 二八杠技术| 全讯网官方| 李雷雷百家乐的奥妙| 皇冠百家乐代理网址| 澳门百家乐一把决战输赢| 百家乐投注必胜法| 二爷百家乐官网的玩法技巧和规则| 澳门百家乐官网赌场娱乐网规则| 斗地主百家乐官网的玩法技巧和规则| 百家乐官网破解视频| 豪博百家乐官网现金网| 明升国际娱乐城| 桂东县| 百家乐官网视频裸聊| 百家乐官网下注几多| 百家乐官网技巧在那里| 足球比分直播| 和政县| 网络百家乐官网模拟投注| 百家乐官网时时彩网站| 百家乐官网画面| 百家乐官网发牌牌规| 百家乐下载免费软件| 百家乐正规站| 百家乐输钱的原因| 大发888易付168 充值| 百家乐龙虎扑克| 百家乐官网保单机作弊| 百家乐现实赌场|