百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

New! Sign up for our free email newsletter.
Science News
from research organizations

New structured thermal armor achieves liquid cooling above 1,000°C

Date:
January 26, 2022
Source:
City University of Hong Kong
Summary:
Scientists have recently designed a structured thermal armor (STA) that achieves efficient liquid cooling even over 1,000°C, fundamentally solving a 266-year-old challenge presented by the Leidenfrost effect. This breakthrough can be applied in aero and space engines, as well as improve the safety and reliability of next-generation nuclear reactors.
Share:
FULL STORY

A research team led by scientists from City University of Hong Kong (CityU) has recently designed a structured thermal armour (STA) that achieves efficient liquid cooling even over 1,000°C, fundamentally solving a 266-year-old challenge presented by the Leidenfrost effect. This breakthrough can be applied in aero and space engines, as well as improve the safety and reliability of next-generation nuclear reactors.

The research has been led by Professor Wang Zuankai from CityU's Department of Mechanical Engineering (MNE), Professor David Quéré from the PSL Research University, France, and Professor Yu Jihong, Director of the International Center of Future Science, Jilin University and Senior Fellow of the Hong Kong Institute for Advanced Study at CityU.

The findings were published in the latest issue of the scientific journal Nature.

The Leidenfrost effect is a physical phenomenon discovered in 1756, which refers to the levitation of drops on a surface that is significantly hotter than the liquid's boiling point. It produces an insulating vapour layer and dramatically reduces heat transfer performances at high temperatures, which makes liquid cooling on the hot surface ineffective. This effect is most often detrimental and it has remained a historic challenge to suppress this effect.

The CityU-led team constructed a multitextured material with key elements that have contrasting thermal and geometrical properties. The rational design for the STA superimposes robust, conductive, protruding pillars that serve as thermal bridges for promoting heat transfer; an embedded thermally insulating membrane designed to suck and evaporate the liquid; and underground U-shaped channels that evacuate the vapour. It successfully inhibits the occurrence of the Leidenfrost effect up to 1,150 °C and achieves efficient and controllable cooling across the temperature range from 100°C to over 1,150°C.

"This multidisciplinary research project is truly a breakthrough in science and engineering, since it mixes surface science, hydro- and aero-dynamics, thermal cooling, material science, physics, energy and engineering. Searching for novel strategies to address the liquid cooling of high-temperature surfaces has been one of the holy grails in thermal engineering since 1756. We are fortunate to fundamentally suppress the occurrence of the Leidenfrost effect and thereby provide a paradigm shift in liquid thermal cooling at extremely high temperatures, a mission that has remained uncharted to date," said Professor Wang.

Professor Wang pointed out that current thermal cooling strategies under extremely high temperatures adopt air cooling measures rather than effective liquid cooling owing to the occurrence of the Leidenfrost effect, especially for applications in aero and space engines and next-generation nuclear reactors.

"The designed STA can be fabricated to be flexible, eliminating the need for additional manufacturing, especially for those surfaces that are hard to be textured directly. This is why the STA possesses huge potential for practical applications," added Professor Wang.

Professor Wang, Professor Quéré and Professor Yuare the corresponding authors of the paper. The first authors are Dr Jiang Mengnan and Dr Wang Yang from MNE.

The collaborators are Professor Pan Chin, Head, Dr Steven Wang, Assistant Professor, Zhang Huanhuan, Research Assistant, Liu Fayu and Li Yuchao, PhD students, from CityU's MNE; and Professor To Suet and Du Hanheng, PhD student,from the Department of Industrial and Systems Engineering, Hong Kong Polytechnic University.


Story Source:

Materials provided by City University of Hong Kong. Note: Content may be edited for style and length.


Journal Reference:

  1. Mengnan Jiang, Yang Wang, Fayu Liu, Hanheng Du, Yuchao Li, Huanhuan Zhang, Suet To, Steven Wang, Chin Pan, Jihong Yu, David Quéré, Zuankai Wang. Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling. Nature, 2022; 601 (7894): 568 DOI: 10.1038/s41586-021-04307-3

Cite This Page:

City University of Hong Kong. "New structured thermal armor achieves liquid cooling above 1,000°C." ScienceDaily. ScienceDaily, 26 January 2022. <www.sciencedaily.com/releases/2022/01/220126122416.htm>.
City University of Hong Kong. (2022, January 26). New structured thermal armor achieves liquid cooling above 1,000°C. ScienceDaily. Retrieved June 2, 2025 from www.sciencedaily.com/releases/2022/01/220126122416.htm
City University of Hong Kong. "New structured thermal armor achieves liquid cooling above 1,000°C." ScienceDaily. www.sciencedaily.com/releases/2022/01/220126122416.htm (accessed June 2, 2025).

Explore More

from ScienceDaily

RELATED STORIES


百家乐官网正网包杀| 亿酷棋牌世界下载| 百家乐网络游戏信誉怎么样| 博彩百家乐官网后一预测软件| 大发888开户博盈国际| 赌场百家乐投注公式| 百家乐官网出牌规| 利高百家乐官网游戏| 尊龙备用网站| 澳门百家乐官网公试打法| 百家博娱乐城| 天博国际娱乐城| 博彩网站排行| 香港六合彩报码室| 大发888在线娱乐城代理| 百家乐赌缆注码运用| 线上百家乐官网手机版| 网上玩百家乐官网的玩法技巧和规则| 战神百家乐官网娱乐| 泰来县| 仁怀市| 优博网| 德州扑克大盲注| 大发888线上娱乐城百家乐| 永利高投注网哪个好| 豪享博百家乐的玩法技巧和规则 | 太阳城百家乐官网试玩优惠| 乌海市| 乌苏市| 宁国市| 皇冠百家乐官网代理网| 新建县| 百家乐玩揽法大全| 威尼斯人娱乐场申博太阳城| 威尼斯人娱乐代理| 百家乐官网怎么稳赚| 凌源市| 百家乐官网园千术大全| 百家乐官网太阳城球讯网| 百家乐官网投注规则| 百家乐官网长龙如何判断|