百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Uhlenbeck Compactness and Optimal Regularity in Lorentzian Geometry

Dr. Moritz Reintjes
Date & Time
16 Dec 2020 (Wed) | 03:00 PM - 04:00 PM
Venue
Online via ZOOM

Abstract

We resolve two problems of Mathematical Physics. First, we prove that any ?? ∞ connection ?? on the tangent bundle of an arbitrary differentiable manifold with ?? ∞ Riemann curvature can be smoothed by coordinate transformation to optimal regularity ?? ∈ ??1,?? , any ?? < ∞, (one derivative smoother than the curvature). This implies in particular that Lorentzian metrics ofshock wave solutions of the Einstein-Euler equations are non-singular---geodesic curves, locally inertial coordinates and the resulting Newtonian limit all exist in a classical sense. This result is based on a system of nonlinear elliptic partial differential equations, the Regularity Transformation equations, and an existence theory for them at the level of ?? ∞ connections. Secondly, we prove that this existence theory suffices to extend Uhlenbeck compactness from the case of connections on vector bundles over Riemannian manifolds, to the case of connections on tangent bundles of arbitrary manifolds, including Lorentzian manifolds of General Relativity.

Registration URL

https://cityu.zoom.us/meeting/register/tJwocuCtpz0pHtRREgAvv3c__6_3zB5CVaIw

[Zoom meeting link will be provided via email after registration.]

百家乐官网正反投注| 百家乐官网顺序| 皇冠代理网址| 百家乐实战技术| 百家乐网页游戏| 百家乐的技术与心态| 百家乐官网是骗人的么| 利都百家乐国际赌场娱乐网规则| 百家乐官网概率统计| 大发888娱乐场开户| 澳门档百家乐官网的玩法技巧和规则 | 红宝石百家乐官网娱乐城 | 真人百家乐导航| 真人百家乐官网开户须知| 澳门百家乐论| 百家乐庄闲几率| 网上百家乐官网网站导航| 永利高足球网| 百家乐游戏平台排名| 网上百家乐官网如何作假| 大发888 登陆不上| 百家乐德州扑克轮盘| 百家乐官网分析软件下| 大发888娱乐城出纳柜台| 粤港澳百家乐娱乐场| 钱隆百家乐官网大师| 百家乐官网庄家抽水| 黄金岛棋牌游戏下载| 百家乐官网怎么样投注| 大发888 方管下载| 百家乐打闲赢机会多| BB百家乐官网HD| 玩百家乐官网技巧看路| 百家娱乐城| 百家乐游乐园| 百家乐官网娱乐分析软件v| 百家乐官网游戏真钱游戏| 大发888送彩金| 威尼斯人娱乐城梧州店| 百家乐最新破| 百家乐香港六合彩|