百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Stochastic Differential Games with Random Coefficients and Stochastic Hamilton-Jacobi-Bellman-Isaacs Equations

Dr Jing Zhang
Date & Time
16 Aug 2023 (Wed) | 10:30 AM - 11:30 AM
Venue
Online via Zoom
https://nus-sg.zoom.us/j/87645650702?pwd=OWUyODF5alBFSExPL0pzcEJIblh0Zz09

ABSTRACT

In this paper, we study a class of zero-sum two-player stochastic differential games with the controlled stochastic differential equations and the payoff/cost functionals of recursive type. As opposed to the pioneering work by Fleming and Souganidis (Indianna Univ. Math.J., 38(1989), pp.~293-314) and the seminal work by Buckdahn and Li (SIAM J. Control Optim., 417 (2008), pp.~444-475), the involved coefficients may be random, going beyond the Markovian framework and leading to the random upper and lower value functions. We first prove the dynamic programming principle for the game, and then under the standard Lipschitz continuity assumptions on the coefficients, the upper and lower value functions are shown to be the viscosity solutions of the upper and the lower fully nonlinear stochastic Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations, respectively. A stability property of viscosity solutions is also proved. Under certina additional regularity assumptions on the diffusion coefficient, the uniqueness of the viscosity solution is addressed as well.

百家乐官网轮盘怎么玩| 苹果百家乐官网的玩法技巧和规则| 澳门百家乐官网怎样下注| BB百家乐官网HD| 做生意摆什么好招财| 百家乐赌场现金网| 大发888大发888体育| 百家乐官网压分规律| 定24山尺寸深浅土色| 百家乐如何盈利| 大发888最新网址| 长江百家乐官网的玩法技巧和规则| 免费百家乐的玩法技巧和规则| 曼哈顿娱乐场| 赌博百家乐官网的路单| 百家乐官网英皇娱乐场开户注册 | 李雷雷百家乐的奥妙| bet365外围| 百家乐的玩法视频| 大发888游戏技巧| 百家乐官网娱乐天上人间| 百家乐最新套路| 棋牌游戏网| 百家乐官网博娱乐场开户注册 | 网上百家乐官网的玩法技巧和规则| tt娱乐城clega| 百家乐庄闲点数| 百家乐官网输了好多钱| 大发888注册步骤| 百家乐牌九| 百家乐官网娱乐求指点呀| 百家乐最大的赌局| 饶阳县| 百家乐平7s88| 澳门百家乐官网门路| 百家乐群11889| 塑料百家乐官网筹码| 威尼斯人娱乐城开户| 哪家百家乐官网优惠最好且信誉不错| bet365备用器| 名人百家乐官网的玩法技巧和规则 |