百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Second-order flow approach for solving variational problems

Prof. Ziqing XIE
Date & Time
07 Feb 2025 (Fri) | 10:30 AM - 11:30 AM
Venue
B5-310, Yeung Kin Man Academic Building

ABSTRACT

In this talk, we introduce a so-called second-order flow approach, a novel computational framework based on dissipative second-order hyperbolic partial differential equations (PDEs) designed to tackle variational problems. Our focus lies on scenarios where energy functionals are nonconvex and may entail nonconvex constraints. This motivation stems from practical applications such as finding stationary points of Ginzburg-Landau energy in phase-field modeling, Landau-de Gennes energy of the Q-tensor model for liquid crystals, as well as simulating ground states for Bose-Einstein condensates. We explore both the analytical and numerical aspects of this novel framework, showing how discretizing the PDEs leads to original numerical methodologies for addressing variational problems. Analytically, for a class of unconstrained nonconvex variational problems, we demonstrate the convergence of second-order flows to stationary points and establish the well-posedness of the second-order flow equations. Our numerical findings underscore the superiority of second-order flow methods over gradient flow methods across all discussed application scenarios.

 

皇冠百家乐官网赢钱皇冠| 明升网址| 澳门百家乐官网游戏官网| 大发888娱乐场下载官方| 百家乐官网赌博外挂| 死海太阳城酒店| 百家乐规则好学吗| 飞天百家乐官网的玩法技巧和规则| 中山水果机定位器| 钱隆百家乐破解版| 百家乐斗视频游戏| 百家乐官网技巧平注常赢法| 百家乐官网娱乐城网址| 正镶白旗| 世界顶级赌场酒店| 大发888娱乐城出纳| 百家乐赌法| 百家乐官网做庄家必赢诀窍| 乐百家乐官网彩现金开户| 哪个百家乐官网投注好| 大发888官方 3000| 百家乐连锁| 百家乐平注法到65688| 娱乐百家乐的玩法技巧和规则| 大众百家乐娱乐城| 大发888ber娱乐场下载| 宝马会娱乐城官网| 百家乐官网开发公司| 赌博百家乐官网判断决策| 百家乐官网玩牌| 百家乐官网丽| 大世界百家乐娱乐平台| 好运来百家乐官网的玩法技巧和规则| 百家乐官网注册18元体验金| 百家乐官网小路单图解| 百家乐官网家居 | 奔驰百家乐官网游戏电玩| 百家乐官网几点不用补| 利来国际| 7人百家乐中号桌布| 百家乐娱乐城公司|