百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

On nonconforming approximations for a class of semilinear problems

Mr. Benedikt Gr??le
Date & Time
01 Mar 2024 (Fri) | 04:00 PM - 05:00 PM
Venue
Y5-204, Yeung Kin Man Academic Building

ABSTRACT

The a priori and a posteriori error analysis in [1, 3] establishes a unified analysis for different finite element approximations to regular roots of nonlinear partial differential equations with a quadratic nonlinearity. A smoother in the source and nonlinearity enables quasi-best approximations in [3] under a set of hypotheses that guarantees the existence and local uniqueness of a discrete solutions by the Newton-Kantorovich theorem. Related assumptions on some computed approximation close to a regular root allow the reliable and efficient a posteriori error analysis [1] for a general class of rough sources introduced in [2]. Applications include nonconforming discretisations for the von Kármán plate and the stream-vorticity formulation of the stationary Navier-Stokes equations in 2D by the Morley, two versions of discontinuous Galerkin, C0 interior penalty, and WOPSIP methods. The talk presents joint work within the working groups of Prof. C. Carstensen and Prof. N. Nataraj.

百家乐官网国际娱乐场| 百家乐官网有哪些注| 百家乐网投注| 全讯网网址xb112| 百家乐官网作| 将军百家乐的玩法技巧和规则 | 百家乐网站| 百家乐官网视频官方下载| 奇迹百家乐的玩法技巧和规则 | 百家乐官网赢的技巧| 澳门百家乐奥秘| 六合彩图库大全| 百家乐赢钱好公式| 大发888国际娱乐城lm0| 百家乐官网1元投注| 宝都棋牌游戏| 新全讯网353788| KK百家乐官网娱乐城| 西峡县| 百家乐官网游戏唯一官网站| 德州扑克概率计算| 永利百家乐娱乐平台| 百家乐官网自动投注| 百家乐官网牌数计算法| 新澳门百家乐的玩法技巧和规则| 百家乐官网路单破| 上林县| 打百家乐最好办法| 线上百家乐官网的玩法技巧和规则| 海立方娱乐城| 大发888娱乐游戏外挂| 百家乐官网号破| 澳门百家乐官网威尼斯| 516棋牌游戏| 百家乐纯技巧打| 杨公风水24山分金水法| 现金百家乐官网技巧| 利博国际娱乐| 宝都棋牌游戏| 大发888国际娱乐城lm0| 百家乐追号软件|