百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

No Exceptional Words for Site Percolation on Z^3

Dr Pierre NOLIN
Date & Time
29 Jan 2019 (Tue) | 04:30 PM - 05:30 PM
Venue
2306, Li Dak Sum Yip Yio Chin Academic Building (LI)
City University of Hong Kong

Abstract :

Bernoulli percolation is a model for random media introduced by Broadbent and Hammersley in 1957. In this process, each vertex of a given graph is occupied or vacant, with respective probabilities p and 1-p, independently of the other vertices (for some parameter p). It is arguably one of the simplest models from statistical mechanics displaying a phase transition as the parameter p varies, i.e. a drastic change of behavior at some critical value p_c, and it has been widely studied. Benjamini and Kesten introduced in 1995 the problem of embedding infinite binary sequences into a Bernoulli percolation configuration, known as percolation of words. We give a positive answer to their Open Problem 2: for percolation on Z^3 with parameter p=1/2, we prove that almost surely, all words can be embedded. We also discuss various extensions of this result. This talk is based on a joint work with Augusto Teixeira (IMPA) and Vincent Tassion (ETH Zürich).

百家乐官网唯一能长期赢钱的方法| 百家乐官网技巧微笑心法| 大发888娱乐城官网下载真钱| 百家乐官网轮盘技巧| 网络百家乐的玩法技巧和规则| 太阳百家乐官网3d博彩通| 乐中百家乐的玩法技巧和规则 | 德州百家乐官网扑克桌| 君豪棋牌是真的吗| 大三巴百家乐官网的玩法技巧和规则| bet365存| 喜达百家乐官网的玩法技巧和规则| 大发888娱乐城rfgjdf888bg| 金矿百家乐官网的玩法技巧和规则| 欢乐谷棋牌游戏官网| 百家乐最好的投注法| 真人百家乐官网现金游戏| 大发888官网df888esbgfwz| 百家乐官网佛泰阁| 蓝盾百家乐赌场娱乐网规则| 开百家乐官网骗人吗| 明升88娱乐城| 娱乐城百家乐送白菜| 百家乐官网游戏机图片| 大发888官网充值| 百家乐游戏技巧| 太阳城百家乐官网网址--| 体球网足球即时比分| 百家乐任你博娱乐场| 发中发百家乐官网的玩法技巧和规则| 百家乐追号工具| 百家乐翻天qvod| 百家乐官网伴侣| 皇室国际娱乐城| 大发888官网df888| 找查百家乐玩法技巧| 百家乐如何投注| 大都会百家乐的玩法技巧和规则 | 大发888娱乐城官方下载安装| 百家乐投注心得和技巧| 免费百家乐官网追号软件|