百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Modeling Dependence: From Copulas to Neural Networks

Dr. Marius Hofert
Date & Time
28 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Copulas became popular in finance and insurance for modeling stochastic dependence. However, classical copula models often fail to provide adequate dependence models for real data. We suggest a new dependence modeling paradigm based on certain neural networks called generative moment matching networks. After a brief introduction to copula modeling, we explain why and how generative moment matching networks can replace classical copula models in a wide range of applications. We then present selected applications of this new dependence modeling approach in more detail, namely the construction of dependent quasirandom numbers (to estimate, for example, risk measures with variance reduction) and multivariate time series modeling with flexible dependence (to improve probabilistic predictions). Focus is then put on another application of generative moment matching networks in the copula modeling domain, namely model assessment and selection. The talk covers ideas from several papers of ours and aims at providing an overview over recent advances in learning dependence with neural networks.

Registration

https://cityu.zoom.us/meeting/register/tJUkfuqupjMjG91PGJNOON_Cp8DH5MzT9W3B

[Zoom link will be provided via email after registration.]

百家乐b28博你| 合肥百家乐赌博机| 百家乐官网赌场怎么玩| 门赌场百家乐的规则| 建昌县| 永利百家乐官网娱乐| 百家乐蓝盾有赢钱的吗| 太阳城联盟| 保时捷百家乐娱乐城| 百家乐官网永利娱乐城| 万人迷百家乐的玩法技巧和规则| 最好的百家乐官网游戏平台1| 新大发888娱乐城| 新锦江百家乐官网娱乐场| 大发888 备用6222.co| 百家乐官网网页qq| 百家乐官网有秘技吗| 威尼斯人娱乐城正规吗| 百利宫百家乐官网的玩法技巧和规则 | 全讯网2| 百家乐现实赌场| 玩百家乐官网游戏经验| 大发888提款速度快吗| 百乐门娱乐城| 威尼斯人娱乐城怎样赢| 百家乐游戏下裁| 奥斯卡百家乐官网的玩法技巧和规则| 吉林省| 大发888的促销代码| 最新百家乐电脑游戏机| 百家乐官网出千的高科技| 现金游戏平台| 巴登娱乐城信誉怎么样| 大中华百家乐的玩法技巧和规则| 大集汇百家乐官网的玩法技巧和规则 | 玩百家乐官网秘诀| 青海省| 香港六合彩网址大全| 喜达百家乐的玩法技巧和规则| 百家乐最新套路| 女优百家乐官网的玩法技巧和规则|