百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Modeling Dependence: From Copulas to Neural Networks

Dr. Marius Hofert
Date & Time
28 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Copulas became popular in finance and insurance for modeling stochastic dependence. However, classical copula models often fail to provide adequate dependence models for real data. We suggest a new dependence modeling paradigm based on certain neural networks called generative moment matching networks. After a brief introduction to copula modeling, we explain why and how generative moment matching networks can replace classical copula models in a wide range of applications. We then present selected applications of this new dependence modeling approach in more detail, namely the construction of dependent quasirandom numbers (to estimate, for example, risk measures with variance reduction) and multivariate time series modeling with flexible dependence (to improve probabilistic predictions). Focus is then put on another application of generative moment matching networks in the copula modeling domain, namely model assessment and selection. The talk covers ideas from several papers of ours and aims at providing an overview over recent advances in learning dependence with neural networks.

Registration

https://cityu.zoom.us/meeting/register/tJUkfuqupjMjG91PGJNOON_Cp8DH5MzT9W3B

[Zoom link will be provided via email after registration.]

正品百家乐电话| 澳门百家乐官网下注最低| 菲律宾百家乐的说法| 全讯网hg7758.com| 百家乐官网任你博娱乐网| 百家乐赌场娱乐网规则| 大发888娱乐城xiazai| 百家乐官网有没有破解之法| 大发888怎么赢钱| 2016虎和蛇合作做生意| 离岛区| 百家乐的分析| 在线百家乐官网有些一| 扑克王百家乐官网的玩法技巧和规则 | 百家乐官网客户端LV| 百家乐投注方向| 百家乐官网最保险的方法| 五张百家乐的玩法技巧和规则| 欢乐谷娱乐城开户| 澳门百家乐几副牌| 亚斯博彩网| 利都百家乐国际赌场娱乐网规则| 磐石市| 手机百家乐官网的玩法技巧和规则| 尊龙百家乐娱乐场| 百家乐官网国际娱乐| 百家乐娱乐城赌场| 百家乐官网波音平台路单| 百家乐破解方法技巧| 玩百家乐官网输了| 澳门百家乐官网加盟| 百家乐玩法介| 钱百家乐官网取胜三步曲| 威尼斯人娱乐平台开户| 24 山杨公斗首择日吉凶| 有百家乐官网的棋牌游戏| 博狗娱乐城注册| 大西洋百家乐的玩法技巧和规则| 百家乐官网赌博代理荐| 十六蒲娱乐城| bet365高尔夫娱乐场|