百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Low-bit representations of oversampled signal expansions and neural networks

Professor Alexander M. Powell
Date & Time
07 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online Zoom

ABSTRACT

We discuss mathematical aspects of how to digitally represent information. Redundancy or oversampling is an important ingredient in many types of signal representations. For example, in the classical Shannon sampling theorem, redundancy provides design flexibility and robustness against noisy measurements. We shall discuss analog-todigital conversion for redundant signal representations. We show error bounds which quantify how well different quantization methods, such as consistent reconstruction and Sigma-Delta quantization, utilize redundancy. Lastly, we discuss the problem of training neural networks with low-bit weights; we consider an approach based on stochastic Markov gradient descent (SMGD) and prove that the method performs well both theoretically and numerically.

Registration URL:

https://cityu.zoom.us/meeting/register/tJcrd--vqz4sGND_bAdFEMq8Ssj-UIrFxOwE

粤港澳百家乐官网娱乐平台| 百家乐官网筹码防伪| 百家乐官网保单机作弊| 多台百家乐官网的玩法技巧和规则 | 保时捷百家乐娱乐城| 新濠百家乐现金网| 百家乐路单破| 蜀都棋牌游戏大厅| 宁陵县| 网上百家乐官网赌场娱乐网规则 | 百家乐官网透视牌靴| 百家乐官网直揽经验| 威尼斯人娱乐赌博| 百家乐娱乐城| 百家乐官网技巧大全| 线上龙虎| 百家乐官网制胜方法| 百家乐官网小型抽水泵| 真人百家乐娱乐场| 百家乐官网实时路单| 24山九宫飞星详解| 大发888客服电话 在线| 石楼县| 豪华百家乐桌子厂家| 百家乐官网大赢家客户端| 百乐坊百家乐游戏| 大发888 娱乐平台| 明升百家乐官网娱乐城| 百家乐桌子| 百家乐官网庄的概率| 网上百家乐解密| 澳门百家乐官网大家乐眼| 大发888娱乐城qq服务| 百家乐官网在线投注网| 大发888国际娱乐平台| 百家乐百家乐视频| 百家乐官网赢钱海立方| 如何看百家乐路| 喀喇| 百家乐是哪个国家| A8百家乐官网娱乐城|