百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Low-bit representations of oversampled signal expansions and neural networks

Professor Alexander M. Powell
Date & Time
07 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online Zoom

ABSTRACT

We discuss mathematical aspects of how to digitally represent information. Redundancy or oversampling is an important ingredient in many types of signal representations. For example, in the classical Shannon sampling theorem, redundancy provides design flexibility and robustness against noisy measurements. We shall discuss analog-todigital conversion for redundant signal representations. We show error bounds which quantify how well different quantization methods, such as consistent reconstruction and Sigma-Delta quantization, utilize redundancy. Lastly, we discuss the problem of training neural networks with low-bit weights; we consider an approach based on stochastic Markov gradient descent (SMGD) and prove that the method performs well both theoretically and numerically.

Registration URL:

https://cityu.zoom.us/meeting/register/tJcrd--vqz4sGND_bAdFEMq8Ssj-UIrFxOwE

百家乐只打一种牌型| 百家乐官网视频打牌| 立即博百家乐的玩法技巧和规则 | 机械手百家乐官网的玩法技巧和规则| 属虎和属鼠合伙做生意| 速博百家乐的玩法技巧和规则| 百家乐官网最佳注码法| 大发888主页| 百家乐官网社区| 360博彩通| 海立方百家乐海立方| 皇城娱乐| 游戏百家乐官网押发| 永利高百家乐现金网| 百家乐官网盈利分析路单| 大发888澳88| 百家乐官网百战百胜| 榕江县| 闲和庄百家乐娱乐城| 欧洲百家乐官网的玩法技巧和规则| 在线龙虎斗| 百家乐官网单跳投注法| 百家乐黏土筹码| 百家乐官网计划| 百樂坊娱乐| 百家乐投注怎么样| 百家乐官网法则| 百家乐官网注码技巧| 免费百家乐倍投软件| 哪家百家乐官网优惠最好且信誉不错 | 乐透世界娱乐城| 威尼斯人娱乐场 五星| 百家乐真人视屏游戏| 网络百家乐官网路子玩| 旅游| 网络轮盘| 百家乐AG| 百家乐有没有稳赢| 星河百家乐官网的玩法技巧和规则 | 独赢百家乐全讯网| 百家乐官网游戏机技|