百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Linear quadratic mean field games and their asymptotic solvability

Professor HUANG Minyi
Date & Time
11 Feb 2022 (Fri) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Abstract

We consider linear quadratic (LQ) mean field games (MFGs) and study their asymptotic solvability problems. Roughly, we attempt to answer these questions: When does a sequence of games, with increasing populations, have “well behaved’’ centralized solutions? And how to characterize a necessary and sufficient condition for such nice solution behaviors. We start with a model of homogeneous agents and develop a re-scaling technique for analysis. An important issue in MFGs is the performance of the obtained decentralized strategies in an N-player model, and one usually can obtain an O(N^{-1/2})- Nash equilibrium. By our approach we can improve the estimate from O(N^{-1/2}) to the tightest bound O(1/N).

We will further generalize to a major player model and clarify the relation of different solutions existing in the literature. Finally, this asymptotic solvability formulation can be extended to mean field social optimization.

Zoom Link

https://cityu.zoom.us/j/97232939340?pwd=VU9mNVVNZUNVZDc3NllUTldPN1hNUT09

Meeting ID: 972 3293 9340

Password: 151920

哪里有百家乐代理| 金臂百家乐官网注册送彩金| 网络赌博平台| 百家乐官网单打| 百家乐网上真钱娱乐| 皇冠网站| 红宝石百家乐官网的玩法技巧和规则| 机器百家乐软件| 百家乐官网好的平台| 百家乐玩法秘决| tt娱乐城备用| 奇迹百家乐官网的玩法技巧和规则 | 易发百家乐| 韩国百家乐官网的玩法技巧和规则 | 网址百家乐的玩法技巧和规则| 潍坊市| 百家乐最新心得| 365赌球| 丽景湾百家乐官网的玩法技巧和规则 | 真人百家乐蓝盾娱乐场| 临海市| 利高百家乐娱乐城| 新利88网上娱乐| 爱赢百家乐现金网| G3娱乐城| 百家乐路单破解器| 澳门赌场小姐| 百家乐大赢家小说| 澳门博彩网| 易学24山3d罗盘App| 六合彩码报| 鼠和猴做生意招财| 六合彩现场开奖结果| 百家乐视频连线| 皇冠网足球开户| 百家乐梅花图标| 赌博千术| 赌场百家乐技巧| 澳门百家乐官网死局| 闲和庄百家乐娱乐网| 百家乐官网博彩软件|