百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Lagrangian Approximations and Computations of Front Speeds in Chaotic Flows

Dr Zhiwen ZHANG
Date & Time
14 Dec 2022 (Wed) | 04:00 PM - 05:00 PM
Venue
G5-314, Yeung Kin Man Academic Building

ABSTRACT

We study the propagation speeds of reaction-diffusion-advection (RDA) fronts in time-periodic cellular and chaotic flows with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We first apply the variational principle to reduce the computation of KPP front speeds to a principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic coefficient on a periodic domain. To this end, we develop efficient Lagrangian particle methods to compute the principal eigenvalue through the Feynman-Kac formula. We also obtain convergence analysis for the proposed numerical method. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows, especially the time-dependent Arnold-Beltrami-Childress (ABC) flow and time-dependent Kolmogorov flow in three-dimensional space. We also report some recent progress in developing a Deep Particle method to learn invariant measures by a deep neural network minimizing Wasserstein distance on data generated from Lagrangian particle methods.

 

 

百家乐真人百家乐皇冠| 注册娱乐城送彩金| 香港六合彩官方网站| 满城县| 传奇百家乐官网的玩法技巧和规则| 百家乐如何打公式| 百家乐侧牌器| 大发888官网黄金版| 辽阳县| 赌百家乐到底能赌博赢| 新建县| 云博娱乐城,| 人气最高棋牌游戏| 网络百家乐官网投注| 真人百家乐官网试玩游戏| 永利博百家乐官网的玩法技巧和规则 | 破解百家乐官网真人游戏| 百家乐双筹码怎么出千| 免费棋牌游戏| 做生意用的 风水上最好的尺寸有 做生意门朝向什么方向 | 百家乐赌博平台| 新全讯网网站xb112| 百家乐官网真人娱乐场| 百家乐发脾机| 大发888下载大发888游戏平台| 大发888-大发娱乐城| 百家乐官网开户优惠多的平台是哪家 | 天博百家乐的玩法技巧和规则| 德州扑克教学| 百家乐官网强弱走势图| 百家乐是怎么赌法| 小孟百家乐官网的玩法技巧和规则| 全讯网| 大玩家百家乐官网游戏| 澳门百家乐的玩法技巧和规则 | 百家乐赢钱好公式| 蒙特卡罗国际网址| 哪个百家乐最好| 榆中县| 太原百家乐招聘| 玩百家乐官网的好处|