百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Lagrangian Approximations and Computations of Front Speeds in Chaotic Flows

Dr Zhiwen ZHANG
Date & Time
14 Dec 2022 (Wed) | 04:00 PM - 05:00 PM
Venue
G5-314, Yeung Kin Man Academic Building

ABSTRACT

We study the propagation speeds of reaction-diffusion-advection (RDA) fronts in time-periodic cellular and chaotic flows with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We first apply the variational principle to reduce the computation of KPP front speeds to a principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic coefficient on a periodic domain. To this end, we develop efficient Lagrangian particle methods to compute the principal eigenvalue through the Feynman-Kac formula. We also obtain convergence analysis for the proposed numerical method. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows, especially the time-dependent Arnold-Beltrami-Childress (ABC) flow and time-dependent Kolmogorov flow in three-dimensional space. We also report some recent progress in developing a Deep Particle method to learn invariant measures by a deep neural network minimizing Wasserstein distance on data generated from Lagrangian particle methods.

 

 

百家乐官网庄闲和的概率| 河北省| 百家乐怎样做弊| 久盛国际娱乐城| 大发888手机版下载| 巴登娱乐城开户| 网上百家乐赌钱| 百家乐公式| 老人头百家乐官网的玩法技巧和规则 | 百家乐常用公式| 真钱百家乐官网开户试玩| 百家乐庄家胜率| 百家乐官网天上人间| 乐宝百家乐的玩法技巧和规则| 线上百家乐官网的玩法技巧和规则| 大发888游戏平台hg dafa888 gw| 百家乐软件辅助| 成都百家乐牌具| 任我赢百家乐官网软件| 456棋牌游戏| 至尊百家乐年代| 百家乐官网赌博详解| 百家乐压分规律| 百家乐官网仿水晶筹码| 威尼斯人娱乐场老品牌| 百家乐官网压钱技巧| 全讯网六| 真钱百家乐注册送| 上市百家乐官网评论| 做生意的怎样招财| 百家乐官网双倍派彩的娱乐城| 香港百家乐的玩法技巧和规则| 淘金百家乐官网的玩法技巧和规则 | 网上百家乐大赢家| 乐清市| 德州扑克女王| 百家乐群shozo权威| 百家乐扑克桌布| VIP百家乐官网-挤牌卡安桌板| 花莲市| 876棋牌游戏中心|