百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Finite dimensional projections of Hamilton-Jacobi-Bellman equations in spaces of probability measures and stochastic optimal control of particle systems

Prof. Amdrzej SWIECH
Date & Time
03 Dec 2024 (Tue) | 04:00 PM - 05:00 PM
Venue
G5-214, Yeung Kin Man Academic Building

ABSTRACT

In this talk we will present recent results about optimal control of large particle systems with common noise, interacting through their empirical measures. One way of analyzing the problem is by studying what happens in the limit as the number of particles $n$ goes to infinity. We will discuss how to prove the convergence of the value functions $u_n$ corresponding to control problems of $n$ particles to the value function $V$ corresponding to an appropriately defined infinite dimensional control problem, which is the unique viscosity solution of the limiting HJB equation in the Wasserstein space. The proofs of the convergence of $u_n$ to $V$ use PDE viscosity solution techniques. We will show that under certain additional assumptions, $V$ is $C^{1,1}$ in the spatial variable. We will then explain that if $DV$ is continuous, the value function $V$ projects precisely onto the value functions $u_n$. We will discuss how the $C^{1,1}$ regularity of $V$ allows to construct optimal feedback controls and how optimal controls for the finite dimensional problems correspond to optimal controls of the infinite dimensional problem and vice versa. We will also discuss how to relax assumptions on the coefficients of the cost functional by using approximation techniques in the Wasserstein space to prove that $V$ projects precisely onto the value functions $u_n$ when $V$ may not be differentiable.

博盈娱乐场| 百家乐牌九| 百家乐官网庄闲和各| 百家乐官网筹码真伪| 百家乐庄闲排列| 网上澳门| 新梦想百家乐官网的玩法技巧和规则 | 真人百家乐官网策略| 百家乐投注方法投资法| 百家乐破解分| 百家乐官网补牌规律| 百家乐官网特殊计| 斗地主棋牌游戏| 百家乐澳门规矩| 金赞百家乐官网娱乐城| 希尔顿百家乐试玩| 百家乐官网有几种打法| 澳门百家乐大家乐眼| 百家乐官网投注打三断| 百家乐园云鼎娱乐网| 百家乐官网棋牌外挂| 新时代百家乐的玩法技巧和规则| 百家乐官网路单免费下载| 免费百家乐计划软件| 百家乐官网投注之对冲投注| 香港六合彩开| 百家乐官网桌子定制| 网络棋牌游戏| 赌博百家乐的玩法技巧和规则| 现场百家乐官网的玩法技巧和规则 | 凯旋门娱乐城开户网址| 百家乐官网技论坛| 永利百家乐官网的玩法技巧和规则 | 百家乐官网倍投软件| 西平县| 百家乐娱乐平台会员注册| 诚信百家乐官网平台| 奔驰百家乐游戏| 铁岭县| 大佬百家乐的玩法技巧和规则 | 中华娱乐城|