百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Empirical approximation to invariant measures for McKean-Vlasov processes

Professor Dai KU
Date & Time
30 Nov 2022 (Wed) | 10:00 AM - 11:00 AM
Venue
Online Zoom

ABSTRACT

This work obtains  that, under a monotonicity condition, the invariant probability measure of a McKean-Vlasov process can be approximated by weighted empirical measures of some processes including itself. These processes are described by distribution dependent or empirical measure dependent stochastic differential equations constructed from the equation for the McKean-Vlasov process. Convergence of empirical measures is characterized by upper bound estimates for their Wasserstein distance to the invariant measure. The theoretical results are demonstrated via a mean-field Ornstein-Uhlenbeck process.

 

 

香港百家乐官网玩法| 开百家乐骗人吗| 百家乐官网玩法教材| 2024地运朝向房子| 葡京赌场| 百家乐游戏分析| 百家乐技巧| 91百家乐官网的玩法技巧和规则 | 线上百家乐官网的玩法技巧和规则| 20人百家乐桌| AG百家乐官网大转轮| 德州扑克算牌器| 台湾省| 24山先天分房| 百家乐官网补牌规律| 正品百家乐的玩法技巧和规则| 网络百家乐官网诈骗| 百家乐盈利分析路单| 百家乐官网系列抢庄龙| 516棋牌游戏| 百家乐2号说名书| 百家乐官网网上真钱赌场娱乐网规则 | 澳门太阳城娱乐城| 百家乐赌场老千| 百家乐官网视频挖坑| 大发888充钱| 百家乐官网园有限公司| 百家乐官网投注注技巧| 大发888游戏平台df888| 百家乐手机游戏下载| 百家乐官网澳门百家乐官网| 大发8880634| 百家乐新送彩金| 百家乐官网园qq群| 百家乐官网科学| 信誉博彩网| 大发888游戏软件下载| 百家乐电子路单谁| 做生意的摆件| 免费百家乐官网的玩法技巧和规则| 百家乐官网怎么玩啊|