百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation

Professor Mikhail V. Kilbanov
Date & Time
17 May 2023 (Wed) | 11:00 AM - 12:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/tJIudOCoqDojEtTSnmFHPxvZSVuBmAmeOPSn

ABSTRACT

The convexification method of the presenter is the single numerical method with the global convergence property for coefficient inverse problems with non-overdetermined data. It is applicable to a broad class of Coefficient Inverse Problems, The key is the Carleman Weight Function, which is involved in the resulting cost functional. We will present this method for a Coefficient Inverse Problem for the radiative transport equation (co-authors Professor Jingzhi Li and Doctor Zhipeng Zhang). Next, we will present both Holder and Lipschitz stability estimates for a Coefficient Inverse Problem for the parabolic equation with the final overdetermination. Finally, we will present Lipschitz stability estimate for a problem of Mean Field Games. If time will allow, then we will discuss other results, which we have recently obtained for other problems of mean field games, see five most recent preprints at https://arxiv.org/search/?query=Klibanov&searchtype=all&source=header

娱乐城豪享博主推| 索雷尔百家乐官网的玩法技巧和规则| 包赢百家乐的玩法技巧和规则| 百家乐真人博彩的玩法技巧和规则| 盛大娱乐城现金网| 百家乐官网真钱娱乐| 百家乐游戏合法吗| 百家乐官网五式缆投法| 362百家乐官网的玩法技巧和规则| 百家乐官网群| 百家乐赢得秘诀| 大发888 df登录| 网上百家乐官网哪里开户| 百家乐澳门百家乐| 百家乐详解| 百家乐官网二十一点游戏| 百家乐预约| 舟山星空棋牌游戏大厅下载| 百家乐官网游戏机分析仪| 美高梅百家乐娱乐城| 汉川市| 百家乐投注网中国| 百家乐官网送钱平台| 美高梅娱乐| 百家乐园会员注册| 高州市| 百家乐出千方法技巧| E乐博百家乐官网现金网| 中华百家乐娱乐城| 真人百家乐官网平台下载| 百家乐筹码14克| 真钱百家乐官网开户试玩| 圣保罗百家乐的玩法技巧和规则| 线上百家乐官网开户| 大发888游戏平台hgdafa888gw| 皇冠百家乐官网的玩法技巧和规则| 百家乐官网娱乐城反水| 水果机游戏机遥控器| 百家乐赢新全讯网| 百家乐官网娱乐皇冠世界杯 | 百家乐小游戏开发|