百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

A control variate method driven by diffusion approximation

Dr. Laurent Mertz
Date & Time
24 Mar 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

We present a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation (or a variational inequality) driven by fast mean-reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples.

Registration

https://cityu.zoom.us/meeting/register/tJUrcumqrTgiE9SmgKZWn8pvZ0e_1qZXcYO-

[Zoom link will be provided via email after registration.]

肯博88网| 今晚六合彩开什么| 百家乐笑话| 阳山县| 百家乐网上技巧| 打牌网| 百家乐在线小游戏| 葡京百家乐官网注码 | 百家乐官网双面数字筹码怎么出千 | 百家乐官网娱乐网址| 百家乐打法介绍| 网上百家乐官网如何打水| 百家乐必胜法技巧| 百家乐官网大西洋城v| 大发888casino下载| 百家乐赢的秘诀| 南丹县| 谁会玩百家乐的玩法技巧和规则 | 澳门百家乐鸿福厅| 优博在线娱乐| 粤港澳百家乐娱乐场| 海尔百家乐官网的玩法技巧和规则 | 筹码百家乐官网500| 南京百家乐赌博现场被| 百家乐官网庄闲必胜规| 永利百家乐官网游戏| 大发888真钱棋牌| 百家乐明灯| 澳门百家乐官网游戏| 中信娱乐城| 大发888截图| 玩百家乐678娱乐城| 真人百家乐官网对决| 罗定市| 舟山星空棋牌官网| 百家乐游戏单机牌| 百家乐闲庄概率| 钱隆百家乐官网大师| 百乐门线上娱乐城| 百家乐马渚| 澳门百家乐官网大揭密|