百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

A control variate method driven by diffusion approximation

Dr. Laurent Mertz
Date & Time
24 Mar 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

We present a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation (or a variational inequality) driven by fast mean-reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples.

Registration

https://cityu.zoom.us/meeting/register/tJUrcumqrTgiE9SmgKZWn8pvZ0e_1qZXcYO-

[Zoom link will be provided via email after registration.]

皇家百家乐官网出租平台| 风水8闰24山| 百家乐赌博游戏| 真人百家乐游戏网址| 全讯网新2代理| 澳门百家乐官方网站| 菲律宾百家乐官网的说法| 百家乐网| 网上百家乐官网试玩网址| 百家乐合理的投注法| 蓝盾百家乐的玩法技巧和规则 | 百家乐官网百乐发破解版| 百家乐直杀| 棋牌游戏平台开发| 澳门百家乐官网下三路| 百家乐庄闲分布概率| 炸金花棋牌游戏| 赤壁市| 澳门百家乐官网园游戏| 世嘉百家乐官网的玩法技巧和规则| 百家乐英皇娱乐城| 朔州市| 金满堂百家乐官网的玩法技巧和规则 | 娱乐百家乐官网的玩法技巧和规则 | 粤港澳百家乐娱乐网| 希尔顿百家乐娱乐城| 真让百家乐官网游戏开户| 百胜百家乐软件| 棋牌游戏易发| 百家乐赢钱皇冠网| 百家乐官网咨询网址| 百家乐赌场规则| 战神国际娱乐城| 百家乐现金网信誉排名| 文登市| 发中发百家乐的玩法技巧和规则| 娱乐城注册送38彩金| 博E百百家乐官网的玩法技巧和规则| 棋牌游戏大全| 百家乐游戏介绍与分析| 澳门百家乐官网职业|