百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations

Dr. Gerg? Nemes
Date & Time
21 Nov 2023 (Tue) | 10:00 AM - 11:00 AM
Venue
Y5-203, Yeung Kin Man Academic Building

ABSTRACT

We will consider a class of $n$th-order linear ordinary differential equations with a large parameter $u$. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of $u$. We shall demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter $u$ in large, unbounded domains of the independent variable. We will establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to a third-order Airy-type equation.

 

新葡京娱乐城官网| 大发888娱乐场下载co| 网上百家乐官网试玩网址| 百家乐博牌规例| 百家乐官网压钱技巧| 娱乐城百家乐可以代理吗 | 电玩百家乐官网游戏机路单| sz全讯网网址xb112| 永康百家乐官网赌博| 百家乐群的微博| 百家乐官网讯特| 现金网开户| 真钱百家乐送钱| 襄汾县| 五星百家乐的玩法技巧和规则 | 土豪百家乐的玩法技巧和规则| 百家乐官网游戏机路法| 申博太阳城娱乐网| 百家乐官网如何看| 最新皇冠足球投注比分网| 宝马会百家乐娱乐城| 百家乐官网视频多开器| 大发888客服qq号| 真人游戏网| 百家乐论坛白菜| 历史百家乐官网路单图| 永利高现金网可信吗| 狮威百家乐官网娱乐城| 网上百家乐官网合法吗| 面对面棋牌游戏| 百家乐网络娱乐场开户注册| 马德里百家乐官网的玩法技巧和规则 | CEO百家乐官网的玩法技巧和规则| 网上玩百家乐官网技巧| 大赢家娱乐城怎么样| 精通百家乐的玩法技巧和规则 | 顶级赌场官网下载| 百家乐娱乐分析软件v4.0| 百家乐官网娱乐网代理佣金| 百家乐官网是如何出千的| 盛大69棋牌游戏|