百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

御匾会百家乐娱乐城| 百家乐官网网站加盟| 百家乐最好投注| 澳门百家乐单注下注| 大发888娱乐城充值| 菲律宾百家乐官网太阳城| 百家乐赌场信息| 宝马会娱乐城返水| 真人百家乐官网娱乐好玩| 富二代百家乐官网的玩法技巧和规则| LV百家乐赢钱LV| 百家乐看澳门| 赌场百家乐官网玩法介绍| 线上百家乐怎么玩| 电脑百家乐官网的玩法技巧和规则| 顶级赌场下载| 百家乐官网园36bol在线| 现场百家乐官网电话投注| 百家乐77scs官| 网上的百家乐官网怎么才能赚钱| 大发888下载并安装| 百家乐官网实时赌博| 威尼斯人娱乐注册| 百家乐官网平台有什么优势| 大佬百家乐娱乐城| 旅百家乐官网赢钱律| 大发888线上娱乐百家乐| 奇迹百家乐官网的玩法技巧和规则 | 威尼斯人娱乐网站| 百家乐官网娱乐网网77scs| 六合彩官方网站| 百家乐游戏辅助| 临朐县| 真人百家乐官网对决| 丹凤县| 金煌棋牌官网| 华盛顿百家乐的玩法技巧和规则 | 木棉百家乐的玩法技巧和规则| 郁南县| 新加坡百家乐的玩法技巧和规则 | 任你博娱乐城|