百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

保单百家乐官网游戏机| 百家乐官网技巧平注常赢法| 双城市| 百家乐楼梯缆| 百家乐英皇娱乐城| 珠海市| 网络百家乐大转轮| 漳州市| 百家乐双层筹码盘| 申博太阳城官方网站| 沁阳市| 百家乐博彩技巧视频| 东至县| 至尊百家乐于波| 拉斯维加斯国际娱乐| 百家乐永利娱乐场开户注册| 百家乐官网园选百利宫| 最可信百家乐娱乐城| 百家乐官网线路图分析| 阿克| 百家乐庄比闲多多少| 百家乐官网开户平台| 利德赌博| 百家乐官网高手心得| 肯博娱乐| 百家乐赚水方法| 真人百家乐官网怎么玩| 百家乐官网水晶筹码价格| 百家乐官网能战胜吗| 澳门百家乐游戏皇冠网| 皇冠足球开户| 大发888娱乐场游戏下载| 玩百家乐官网怎么能赢呢| 鸡泽县| 利高娱乐| 哪个百家乐技巧平台信誉好| 网上百家乐官网赌博网| bet365在线体育投注| 太阳城真人娱乐城| 百家乐赌场现金网| 博九网百家乐游戏|