百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture
20221114
Published on nature energy (14 November 2022)
 

Author(s): Kui Jiang, Jie Zhang, Cheng Zhong, Francis R. Lin, Feng Qi, Qian Li, Zhengxing Peng, Werner Kaminsky, Sei-Hum Jang, Jianwei Yu, Xiang Deng, Huawei Hu, Dong Shen, Feng Gao, Harald Ade, Min Xiao, Chunfeng Zhang, Alex K.-Y. Jen

 
Abstract

At present, high-performance organic photovoltaics mostly adopt a bulk-heterojunction architecture, in which exciton dissociation is facilitated by charge-transfer states formed at numerous donor–acceptor (D-A) heterojunctions. However, the spin character of charge-transfer states originated from recombination of photocarriers allows relaxation to the lowest-energy triplet exciton (T1) at these heterojunctions, causing photocurrent loss. Here we find that this loss pathway can be alleviated in sequentially processed planar–mixed heterojunction (PMHJ) devices, employing donor and acceptor with intrinsically weaker exciton binding strengths. The reduced D-A intermixing in PMHJ alleviates non-geminate recombination at D-A contacts, limiting the chance of relaxation, thus suppressing T1 formation without sacrificing exciton dissociation efficiency. This resulted in devices with high power conversion efficiencies of >19%. We elucidate the working mechanisms for PMHJs and discuss the implications for material design, device engineering and photophysics, thus providing a comprehensive grounding for future organic photovoltaics to reach their full promise.

 

20221114

a, Illustration of excited-state dynamics in OPV: (1) photoexcitation of singlet excitons: S0→LE; (2, 4) transfer pathways of photoexcited singlet excitons: LE→1CT (2) and LE→DSE (4); (3, 5) dissociation of loosely bound singlet excitons into free charges: 1CT→CS (3) or DSE→CS (5); (6, 7) CT states formation through non-geminate recombination: CS→1CT/3CT, possibly with 1CT/3CT→CS repopulation and spin-allowed 1CT→S0 relaxation; (8) 3CT→T1 relaxation, where further T1→S0 relaxation can happen via triplet-charge annihilation, leading to permanent loss of photocarriers. b, Molecular structures of D18 and two major NFAs used in this study. c, Thin-film optical absorption of D18, NFAs and D18/NFA PMHJ blends. d, Energy level diagram of materials (IP: ionization potential corresponding to the highest occupied molecular orbital energy level; EA: electron affinity corresponding to the lowest unoccupied molecular orbital energy level.). e, ToF-SIMS Se2? ion yield of D18/T9SBN-F PMHJ and D18:T9SBN-F BHJ blends plotted over sputtering time. The inset shows the schematic illustration of PMHJ and BHJ blends.

Read more: https://www.nature.com/articles/s41560-022-01138-y#Fig1

 
 
 
 
 
 
 
 
在线真人娱乐城| 里尼的百家乐官网策略| 百家乐官网桌布专业| 太阳城百家乐赌场| 牌九百家乐官网的玩法技巧和规则 | 风水24山向哪些不能兼| 百家乐官网筹码免运费| 百家乐官网游戏算牌| 六合彩开奖查询| 威尼斯人娱乐城筹码| 百家乐德州扑克发牌盒| 至尊百家乐20130201| 任我赢百家乐官网软件中国有限公司| 平远县| 运城市| 新濠国际| 九头鸟棋牌游戏中心| 大发888客户端安装| 梓潼县| 百家乐官网赢家公式| 大洼县| 百家乐官网怎么样投注| 视频百家乐官网信誉| 百家乐官网自动下注| 百家乐官网真人游戏娱乐场| 巴黎人百家乐官网的玩法技巧和规则| 澳门百家乐官网游戏官网| 澳门百家乐技巧| 百家乐博百家乐| 大发888赌场娱乐网规则| 衡南县| 在线百家乐官网大家赢| 百家乐官网庄和闲的赌法| 新世纪百家乐官网娱乐城| 南京百家乐官网的玩法技巧和规则 | 百家百家乐视频游戏世界| 综合百家乐博彩论坛| 澳门博彩娱乐有限公司| 百家乐官网发牌千数| 百家乐官网出千工具价格| 樱桃木百家乐官网桌|