百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

立即博百家乐的玩法技巧和规则 | 大发娱乐城| 百家乐官网游戏规范| 威尼斯人娱乐城lm0| 模拟百家乐官网下| 娱乐城百家乐官网怎么样| 真人百家乐| 游戏房百家乐赌博图片| 盐城百家乐的玩法技巧和规则| 百家乐官网注册18元体验金| 大发888真钱娱乐| 百家乐槛| 百家乐庄闲规则| 成人百家乐官网的玩法技巧和规则 | 顶级赌场 足彩分析| 百家乐5式直缆投注法| 百家乐官网真人百家乐官网皇冠| 博彩| 百家乐庄闲出现几| 凯旋门百家乐官网技巧| 棋牌58w| 百家乐送18元彩金| 24楼层风水好吗| 百家乐官网百博| 百家乐官网赢钱海立方| 六合彩码报| 百家百家乐官网网站| 网络百家乐电脑| 高楼24层风水好吗| 百家乐官网2号技术| 稻城县| 金道博彩| 赌场百家乐官网赌场| 百家乐官网实时路单| 博彩乐百家乐官网平台| 皇冠网网址| 大发888充值100| 娱乐城开户送体验金| 娱网棋牌大厅下载| 顶旺娱乐| 棋牌|