百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

百家乐技巧运气| 真人百家乐官网娱乐场| 六合彩生肖表| 大发888手机好玩吗| 元游棋牌游戏| 网上百家乐官网玩法| 百家乐官网图表分析| 娱乐城百家乐官网高手| 免佣百家乐官网的玩法| 狮威百家乐官网赌场娱乐网规则| 澳门百家乐官网网上赌| 百家乐官网筹码多少钱| 金百家乐官网的玩法技巧和规则| 百家乐真人娱乐城| 百家乐赢输| 大发888 备用6222.com| 海立方百利宫娱乐城| 悠游棋牌游戏| 网上百家乐官网赌场| 巴西百家乐官网的玩法技巧和规则 | 24楼风水化解| 百家乐赌场程序| 大发888娱乐游戏充值| 陕西省| 一直对百家乐官网很感兴趣.zibo太阳城娱乐城| 火命与金命做生意| 破解百家乐官网公式| 百家乐7scs娱乐场| 旧金山百家乐官网的玩法技巧和规则 | 现金网注册送彩金| 蜀都棋牌游戏| 百家乐稳赢赌法| 大发888线上娱乐21点| 新全讯网xb112| 百家乐官网游戏研发| 做生意带什么装饰招财| 百家乐官网假在哪里| 百家乐赌马| 百家乐官网必胜绝技| 威尼斯人娱乐网假吗 | 百家乐庄闲出现几率|