百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

COURSES >>>


SDSC3004 - Computational Optimization

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester B 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This course introduces students to algorithms and techniques for optimization and nonlinear programming problems. Students will learn important numerical optimization methods such as the gradient descent, the Newtona??s method, the quasi-Newtona??s methods for unconstrained optimization, and the methods for constrained optimization. The classic methods for machine learning such as the stochastic gradient descent and its acceleration techniques, will be covered as well.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 60%
Examination: 40%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC3004.pdf

百家乐网哪一家做的最好呀| 祁东县| 哪个百家乐投注好| 赌博百家乐官网的路单| 百家乐官网加牌规| 百家乐官网金海岸娱乐| 958棋牌游戏| 明珠百家乐官网的玩法技巧和规则 | 大发888九州娱乐城| 澳门百家乐官网门路| 赌百家乐到底能赌博赢| 网上玩百家乐好吗| 试玩区百家乐1000| 在线百家乐| 百家乐官网麻将筹码币| 24山向中那个向最好| 百家乐官网赌场软件| 百家乐官网和的几率| 澳门葡京娱乐| 大发888提款怎么提| 百家乐线路图分析| 菲律宾太阳城88| 宝马会百家乐的玩法技巧和规则| 百家乐网盛世三国| 百家乐官网tt娱乐场开户注册 | 玩百家乐会犯法吗| 百家乐洗码| 大上海百家乐官网的玩法技巧和规则 | 大发888九州娱乐城| 金逸太阳城团购| 大发888官方网站登录| 金海岸百家乐娱乐城| 百家乐越长的路| 百家乐博娱乐赌百家乐的玩法技巧和规则 | 太阳城百家乐官网杀祖玛| 历史百家乐官网路单图| 百家乐官网侧牌器| 百家乐官网什么叫缆| 百家乐官网娱乐求指点呀| 战神娱乐| 百家乐赌场群|