百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站


 [   ] 

Prof. NOLIN Pierre

PhD – Université Paris-Sud 11 & école Normale Supérieure

Associate Professor

Contact Information

Office: Y5126 Academic 1
Phone: +852 3442-8569
Fax: +852 3442-0250
Email: bpmnolin@cityu.edu.hk

Research Interests

  • Probability Theory
  • Stochastic Processes
  • Statistical Mechanics
Dr. Pierre Nolin received his PhD from Université Paris-Sud 11 and École Normale Supérieure, France, in 2008. Before joining City University in 2017, he worked as an instructor and PIRE fellow at the Courant Institute of Mathematical Sciences, New York University, USA, from 2008 to 2011, and then as an assistant professor in the Department of Mathematics at ETH Zürich, Switzerland, from 2011 to 2017.

Dr. Pierre Nolin's research is focused on probability theory and stochastic processes, in connection with questions originating from statistical mechanics. He is particularly interested in lattice models such as the Ising model of ferromagnetism, Bernoulli percolation, Fortuin-Kasteleyn percolation, frozen percolation, and forest fire processes.


Awards and Achievements

  • 2008 “Prix de thèse Jacques Neveu” Société de Mathématiques Appliquées et Industrielles (Modélisation Aléatoire et Statistique).


Publications Show All Publications Show Prominent Publications


Journal

  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2025). Backbone exponent and annulus crossing probability for planar percolation. Physical Review Letters. 134. 117101 .
  • Gao, Y. , Nolin, P. & Qian, W. (2025). Up-to-constants estimates on four-arm events for simple conformal loop ensemble. arXiv:2504.06202. 36 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two I. Arm events in the random walk loop soup. arXiv:2409.16230. 50 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two II. Connectivity properties of two-sided level sets. arXiv:2409.16273. 71 pp.
  • van den Berg, J. & Nolin, P. (2024). Two-dimensional forest fires with boundary ignitions. arXiv:2407.13652. 23 pp.
  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2023). Backbone exponent for two-dimensional percolation. arXiv:2309.05050. 63 pp.
  • Nolin, P. , Tassion, V. & Teixeira, A. (2023). No exceptional words for Bernoulli percolation. Journal of the European Mathematical Society. 25. 4841 - 4868.
  • van den Berg, J. & Nolin, P. (2022). A 2D forest fire process beyond the critical time. arXiv:2210.05642. 53 pp.
  • van den Berg, J. & Nolin, P. (2021). Near-critical 2D percolation with heavy-tailed impurities, forest fires and frozen percolation. Probability Theory and Related Fields. 181. 211 - 290.
  • Lam, W. K. & Nolin, P. (2021). Near-critical avalanches in 2D frozen percolation and forest fires. arXiv:2106.10183. 72 pp.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2018). Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales Scientifiques de l'école Normale Supérieure. 51. 1017 - 1084.
  • van den Berg, J. & Nolin, P. (2017). Boundary rules and breaking of self-organized criticality in 2D frozen percolation. Electronic Communications in Probability. 22 (no. 65). 1 - 15.
  • van den Berg, J. & Nolin, P. (2017). Two-dimensional volume-frozen percolation: exceptional scales. Annals of Applied Probability. 27. 91 - 108.
  • Hilário, M. , de Lima, B. , Nolin, P. & Sidoravicius, V. (2014). Embedding binary sequences into Bernoulli site percolation on Z^3. Stochastic Processes and their Applications. 124. 4171 - 4181.
  • Ménard, L. & Nolin, P. (2014). Percolation on uniform infinite planar maps. Electronic Journal of Probability. 19 (no. 78). 1 - 27.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2012). A percolation process on the binary tree where large finite clusters are frozen. Electronic Communications in Probability. 17 (no. 2). 1 - 11.
  • van den Berg, J. , de Lima, B. & Nolin, P. (2012). A percolation process on the square lattice where large finite clusters are frozen. Random Structures & Algorithms. 40. 220 - 226.
  • Beffara, V. & Nolin, P. (2011). On monochromatic arm exponents for 2D critical percolation. Annals of Probability. 39. 1286 - 1304.
  • Duminil-Copin, H. , Hongler, C. & Nolin, P. (2011). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Communications on Pure and Applied Mathematics. 64. 1165 - 1198.
  • Nolin, P. & Werner, W. (2009). Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society. 22. 797 - 819.
  • Chayes, L. & Nolin, P. (2009). Large scale properties of the IIIC for 2D percolation. Stochastic Processes and their Applications. 119. 882 - 896.
  • Nolin, P. (2008). Critical exponents of planar gradient percolation. Annals of Probability. 36. 1748 - 1776.
  • Nolin, P. (2008). Near-critical percolation in two dimensions. Electronic Journal of Probability. 13 (no. 55). 1562 - 1623.

Book Chapter

  • van den Berg, J. & Nolin, P. (2021). On the four-arm exponent for 2D percolation at criticality. In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability, vol 77. (pp. 125 - 145). Birkh?user, Cham.


Last update date : 11 Apr 2025
宝马会百家乐官网的玩法技巧和规则 | 通道| 百家乐是个什么样的游戏 | 百家乐五湖四海赌场娱乐网规则| 百家乐官网赚钱方| 百家乐官网实时赌博| 呼伦贝尔市| 大发888备用网| 威尼斯人娱乐城可信吗| 百家乐预约| 个体老板做生意的风水| 机械手百家乐官网的玩法技巧和规则 | 世嘉百家乐的玩法技巧和规则| 玩百家乐官网出千方法| 金濠国际娱乐城| 百家乐博娱乐网赌百家乐的玩法技巧和规则| 玩百家乐官网输了| 东方夏威夷网站| 威尼斯人娱乐城轮盘| 明升网| 大发888游戏平台 17| 网络百家乐投注| 网上百家乐公式| 金牌百家乐官网的玩法技巧和规则| 百家乐官网视频聊天软件| 开16个赌场敛财| 大发888赌场是干什么的| 24山向吉凶详解视频| 百家乐官网生活馆| 百家乐官网在线赌场| 扬中市| 金煌棋牌官网| 百家乐路子| 百家乐打大必赢之法| 百家乐官网博乐36bol在线| 建德市| 博九娱乐城| 迪威网上娱乐| 大发888送钱58元| 电子百家乐假在线哪| 兰桂坊百家乐的玩法技巧和规则|